251 lines
9.2 KiB
Python
251 lines
9.2 KiB
Python
|
"""Python wrappers around TensorFlow ops.
|
||
|
|
||
|
This file is MACHINE GENERATED! Do not edit.
|
||
|
"""
|
||
|
|
||
|
import collections
|
||
|
|
||
|
from tensorflow.python import pywrap_tfe as pywrap_tfe
|
||
|
from tensorflow.python.eager import context as _context
|
||
|
from tensorflow.python.eager import core as _core
|
||
|
from tensorflow.python.eager import execute as _execute
|
||
|
from tensorflow.python.framework import dtypes as _dtypes
|
||
|
from tensorflow.security.fuzzing.py import annotation_types as _atypes
|
||
|
|
||
|
from tensorflow.python.framework import op_def_registry as _op_def_registry
|
||
|
from tensorflow.python.framework import ops as _ops
|
||
|
from tensorflow.python.framework import op_def_library as _op_def_library
|
||
|
from tensorflow.python.util.deprecation import deprecated_endpoints
|
||
|
from tensorflow.python.util import dispatch as _dispatch
|
||
|
from tensorflow.python.util.tf_export import tf_export
|
||
|
|
||
|
from typing import TypeVar, List, Any
|
||
|
from typing_extensions import Annotated
|
||
|
|
||
|
def eager_py_func(input, token: str, Tout, is_async:bool=False, name=None):
|
||
|
r"""Eagerly executes a python function to compute func(input)->output. The
|
||
|
|
||
|
semantics of the input, output, and attributes are the same as those for
|
||
|
PyFunc.
|
||
|
|
||
|
Args:
|
||
|
input: A list of `Tensor` objects.
|
||
|
token: A `string`.
|
||
|
Tout: A list of `tf.DTypes`.
|
||
|
is_async: An optional `bool`. Defaults to `False`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A list of `Tensor` objects of type `Tout`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "EagerPyFunc", name, input, "token", token, "is_async",
|
||
|
is_async, "Tout", Tout)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return eager_py_func_eager_fallback(
|
||
|
input, token=token, is_async=is_async, Tout=Tout, name=name,
|
||
|
ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
token = _execute.make_str(token, "token")
|
||
|
if not isinstance(Tout, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'Tout' argument to "
|
||
|
"'eager_py_func' Op, not %r." % Tout)
|
||
|
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
|
||
|
if is_async is None:
|
||
|
is_async = False
|
||
|
is_async = _execute.make_bool(is_async, "is_async")
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"EagerPyFunc", input=input, token=token, Tout=Tout, is_async=is_async,
|
||
|
name=name)
|
||
|
_result = _outputs[:]
|
||
|
if not _result:
|
||
|
return _op
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("token", _op.get_attr("token"), "is_async",
|
||
|
_op._get_attr_bool("is_async"), "Tin", _op.get_attr("Tin"),
|
||
|
"Tout", _op.get_attr("Tout"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"EagerPyFunc", _inputs_flat, _attrs, _result)
|
||
|
return _result
|
||
|
|
||
|
EagerPyFunc = tf_export("raw_ops.EagerPyFunc")(_ops.to_raw_op(eager_py_func))
|
||
|
|
||
|
|
||
|
def eager_py_func_eager_fallback(input, token: str, Tout, is_async: bool, name, ctx):
|
||
|
token = _execute.make_str(token, "token")
|
||
|
if not isinstance(Tout, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'Tout' argument to "
|
||
|
"'eager_py_func' Op, not %r." % Tout)
|
||
|
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
|
||
|
if is_async is None:
|
||
|
is_async = False
|
||
|
is_async = _execute.make_bool(is_async, "is_async")
|
||
|
_attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx)
|
||
|
_inputs_flat = list(input)
|
||
|
_attrs = ("token", token, "is_async", is_async, "Tin", _attr_Tin, "Tout",
|
||
|
Tout)
|
||
|
_result = _execute.execute(b"EagerPyFunc", len(Tout), inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"EagerPyFunc", _inputs_flat, _attrs, _result)
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def py_func(input, token: str, Tout, name=None):
|
||
|
r"""Invokes a python function to compute func(input)->output.
|
||
|
|
||
|
This operation is considered stateful. For a stateless version, see
|
||
|
PyFuncStateless.
|
||
|
|
||
|
Args:
|
||
|
input: A list of `Tensor` objects.
|
||
|
List of Tensors that will provide input to the Op.
|
||
|
token: A `string`.
|
||
|
A token representing a registered python function in this address space.
|
||
|
Tout: A list of `tf.DTypes`. Data types of the outputs from the op.
|
||
|
The length of the list specifies the number of outputs.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A list of `Tensor` objects of type `Tout`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "PyFunc", name, input, "token", token, "Tout", Tout)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return py_func_eager_fallback(
|
||
|
input, token=token, Tout=Tout, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
token = _execute.make_str(token, "token")
|
||
|
if not isinstance(Tout, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'Tout' argument to "
|
||
|
"'py_func' Op, not %r." % Tout)
|
||
|
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"PyFunc", input=input, token=token, Tout=Tout, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if not _result:
|
||
|
return _op
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("token", _op.get_attr("token"), "Tin", _op.get_attr("Tin"),
|
||
|
"Tout", _op.get_attr("Tout"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"PyFunc", _inputs_flat, _attrs, _result)
|
||
|
return _result
|
||
|
|
||
|
PyFunc = tf_export("raw_ops.PyFunc")(_ops.to_raw_op(py_func))
|
||
|
|
||
|
|
||
|
def py_func_eager_fallback(input, token: str, Tout, name, ctx):
|
||
|
token = _execute.make_str(token, "token")
|
||
|
if not isinstance(Tout, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'Tout' argument to "
|
||
|
"'py_func' Op, not %r." % Tout)
|
||
|
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
|
||
|
_attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx)
|
||
|
_inputs_flat = list(input)
|
||
|
_attrs = ("token", token, "Tin", _attr_Tin, "Tout", Tout)
|
||
|
_result = _execute.execute(b"PyFunc", len(Tout), inputs=_inputs_flat,
|
||
|
attrs=_attrs, ctx=ctx, name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"PyFunc", _inputs_flat, _attrs, _result)
|
||
|
return _result
|
||
|
|
||
|
|
||
|
def py_func_stateless(input, token: str, Tout, name=None):
|
||
|
r"""A stateless version of PyFunc.
|
||
|
|
||
|
Args:
|
||
|
input: A list of `Tensor` objects.
|
||
|
token: A `string`.
|
||
|
Tout: A list of `tf.DTypes`.
|
||
|
name: A name for the operation (optional).
|
||
|
|
||
|
Returns:
|
||
|
A list of `Tensor` objects of type `Tout`.
|
||
|
"""
|
||
|
_ctx = _context._context or _context.context()
|
||
|
tld = _ctx._thread_local_data
|
||
|
if tld.is_eager:
|
||
|
try:
|
||
|
_result = pywrap_tfe.TFE_Py_FastPathExecute(
|
||
|
_ctx, "PyFuncStateless", name, input, "token", token, "Tout", Tout)
|
||
|
return _result
|
||
|
except _core._NotOkStatusException as e:
|
||
|
_ops.raise_from_not_ok_status(e, name)
|
||
|
except _core._FallbackException:
|
||
|
pass
|
||
|
try:
|
||
|
return py_func_stateless_eager_fallback(
|
||
|
input, token=token, Tout=Tout, name=name, ctx=_ctx)
|
||
|
except _core._SymbolicException:
|
||
|
pass # Add nodes to the TensorFlow graph.
|
||
|
# Add nodes to the TensorFlow graph.
|
||
|
token = _execute.make_str(token, "token")
|
||
|
if not isinstance(Tout, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'Tout' argument to "
|
||
|
"'py_func_stateless' Op, not %r." % Tout)
|
||
|
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
|
||
|
_, _, _op, _outputs = _op_def_library._apply_op_helper(
|
||
|
"PyFuncStateless", input=input, token=token, Tout=Tout, name=name)
|
||
|
_result = _outputs[:]
|
||
|
if _execute.must_record_gradient():
|
||
|
_attrs = ("token", _op.get_attr("token"), "Tin", _op.get_attr("Tin"),
|
||
|
"Tout", _op.get_attr("Tout"))
|
||
|
_inputs_flat = _op.inputs
|
||
|
_execute.record_gradient(
|
||
|
"PyFuncStateless", _inputs_flat, _attrs, _result)
|
||
|
return _result
|
||
|
|
||
|
PyFuncStateless = tf_export("raw_ops.PyFuncStateless")(_ops.to_raw_op(py_func_stateless))
|
||
|
|
||
|
|
||
|
def py_func_stateless_eager_fallback(input, token: str, Tout, name, ctx):
|
||
|
token = _execute.make_str(token, "token")
|
||
|
if not isinstance(Tout, (list, tuple)):
|
||
|
raise TypeError(
|
||
|
"Expected list for 'Tout' argument to "
|
||
|
"'py_func_stateless' Op, not %r." % Tout)
|
||
|
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
|
||
|
_attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx)
|
||
|
_inputs_flat = list(input)
|
||
|
_attrs = ("token", token, "Tin", _attr_Tin, "Tout", Tout)
|
||
|
_result = _execute.execute(b"PyFuncStateless", len(Tout),
|
||
|
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
|
||
|
name=name)
|
||
|
if _execute.must_record_gradient():
|
||
|
_execute.record_gradient(
|
||
|
"PyFuncStateless", _inputs_flat, _attrs, _result)
|
||
|
return _result
|
||
|
|