3RNN/Lib/site-packages/tensorflow/python/ops/gen_script_ops.py
2024-05-26 19:49:15 +02:00

251 lines
9.2 KiB
Python

"""Python wrappers around TensorFlow ops.
This file is MACHINE GENERATED! Do not edit.
"""
import collections
from tensorflow.python import pywrap_tfe as pywrap_tfe
from tensorflow.python.eager import context as _context
from tensorflow.python.eager import core as _core
from tensorflow.python.eager import execute as _execute
from tensorflow.python.framework import dtypes as _dtypes
from tensorflow.security.fuzzing.py import annotation_types as _atypes
from tensorflow.python.framework import op_def_registry as _op_def_registry
from tensorflow.python.framework import ops as _ops
from tensorflow.python.framework import op_def_library as _op_def_library
from tensorflow.python.util.deprecation import deprecated_endpoints
from tensorflow.python.util import dispatch as _dispatch
from tensorflow.python.util.tf_export import tf_export
from typing import TypeVar, List, Any
from typing_extensions import Annotated
def eager_py_func(input, token: str, Tout, is_async:bool=False, name=None):
r"""Eagerly executes a python function to compute func(input)->output. The
semantics of the input, output, and attributes are the same as those for
PyFunc.
Args:
input: A list of `Tensor` objects.
token: A `string`.
Tout: A list of `tf.DTypes`.
is_async: An optional `bool`. Defaults to `False`.
name: A name for the operation (optional).
Returns:
A list of `Tensor` objects of type `Tout`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "EagerPyFunc", name, input, "token", token, "is_async",
is_async, "Tout", Tout)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return eager_py_func_eager_fallback(
input, token=token, is_async=is_async, Tout=Tout, name=name,
ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
token = _execute.make_str(token, "token")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'eager_py_func' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
if is_async is None:
is_async = False
is_async = _execute.make_bool(is_async, "is_async")
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"EagerPyFunc", input=input, token=token, Tout=Tout, is_async=is_async,
name=name)
_result = _outputs[:]
if not _result:
return _op
if _execute.must_record_gradient():
_attrs = ("token", _op.get_attr("token"), "is_async",
_op._get_attr_bool("is_async"), "Tin", _op.get_attr("Tin"),
"Tout", _op.get_attr("Tout"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"EagerPyFunc", _inputs_flat, _attrs, _result)
return _result
EagerPyFunc = tf_export("raw_ops.EagerPyFunc")(_ops.to_raw_op(eager_py_func))
def eager_py_func_eager_fallback(input, token: str, Tout, is_async: bool, name, ctx):
token = _execute.make_str(token, "token")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'eager_py_func' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
if is_async is None:
is_async = False
is_async = _execute.make_bool(is_async, "is_async")
_attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx)
_inputs_flat = list(input)
_attrs = ("token", token, "is_async", is_async, "Tin", _attr_Tin, "Tout",
Tout)
_result = _execute.execute(b"EagerPyFunc", len(Tout), inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"EagerPyFunc", _inputs_flat, _attrs, _result)
return _result
def py_func(input, token: str, Tout, name=None):
r"""Invokes a python function to compute func(input)->output.
This operation is considered stateful. For a stateless version, see
PyFuncStateless.
Args:
input: A list of `Tensor` objects.
List of Tensors that will provide input to the Op.
token: A `string`.
A token representing a registered python function in this address space.
Tout: A list of `tf.DTypes`. Data types of the outputs from the op.
The length of the list specifies the number of outputs.
name: A name for the operation (optional).
Returns:
A list of `Tensor` objects of type `Tout`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "PyFunc", name, input, "token", token, "Tout", Tout)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return py_func_eager_fallback(
input, token=token, Tout=Tout, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
token = _execute.make_str(token, "token")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'py_func' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"PyFunc", input=input, token=token, Tout=Tout, name=name)
_result = _outputs[:]
if not _result:
return _op
if _execute.must_record_gradient():
_attrs = ("token", _op.get_attr("token"), "Tin", _op.get_attr("Tin"),
"Tout", _op.get_attr("Tout"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"PyFunc", _inputs_flat, _attrs, _result)
return _result
PyFunc = tf_export("raw_ops.PyFunc")(_ops.to_raw_op(py_func))
def py_func_eager_fallback(input, token: str, Tout, name, ctx):
token = _execute.make_str(token, "token")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'py_func' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
_attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx)
_inputs_flat = list(input)
_attrs = ("token", token, "Tin", _attr_Tin, "Tout", Tout)
_result = _execute.execute(b"PyFunc", len(Tout), inputs=_inputs_flat,
attrs=_attrs, ctx=ctx, name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"PyFunc", _inputs_flat, _attrs, _result)
return _result
def py_func_stateless(input, token: str, Tout, name=None):
r"""A stateless version of PyFunc.
Args:
input: A list of `Tensor` objects.
token: A `string`.
Tout: A list of `tf.DTypes`.
name: A name for the operation (optional).
Returns:
A list of `Tensor` objects of type `Tout`.
"""
_ctx = _context._context or _context.context()
tld = _ctx._thread_local_data
if tld.is_eager:
try:
_result = pywrap_tfe.TFE_Py_FastPathExecute(
_ctx, "PyFuncStateless", name, input, "token", token, "Tout", Tout)
return _result
except _core._NotOkStatusException as e:
_ops.raise_from_not_ok_status(e, name)
except _core._FallbackException:
pass
try:
return py_func_stateless_eager_fallback(
input, token=token, Tout=Tout, name=name, ctx=_ctx)
except _core._SymbolicException:
pass # Add nodes to the TensorFlow graph.
# Add nodes to the TensorFlow graph.
token = _execute.make_str(token, "token")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'py_func_stateless' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
_, _, _op, _outputs = _op_def_library._apply_op_helper(
"PyFuncStateless", input=input, token=token, Tout=Tout, name=name)
_result = _outputs[:]
if _execute.must_record_gradient():
_attrs = ("token", _op.get_attr("token"), "Tin", _op.get_attr("Tin"),
"Tout", _op.get_attr("Tout"))
_inputs_flat = _op.inputs
_execute.record_gradient(
"PyFuncStateless", _inputs_flat, _attrs, _result)
return _result
PyFuncStateless = tf_export("raw_ops.PyFuncStateless")(_ops.to_raw_op(py_func_stateless))
def py_func_stateless_eager_fallback(input, token: str, Tout, name, ctx):
token = _execute.make_str(token, "token")
if not isinstance(Tout, (list, tuple)):
raise TypeError(
"Expected list for 'Tout' argument to "
"'py_func_stateless' Op, not %r." % Tout)
Tout = [_execute.make_type(_t, "Tout") for _t in Tout]
_attr_Tin, input = _execute.convert_to_mixed_eager_tensors(input, ctx)
_inputs_flat = list(input)
_attrs = ("token", token, "Tin", _attr_Tin, "Tout", Tout)
_result = _execute.execute(b"PyFuncStateless", len(Tout),
inputs=_inputs_flat, attrs=_attrs, ctx=ctx,
name=name)
if _execute.must_record_gradient():
_execute.record_gradient(
"PyFuncStateless", _inputs_flat, _attrs, _result)
return _result