3RNN/Lib/site-packages/tensorflow/python/ops/cudnn_rnn_grad.py
2024-05-26 19:49:15 +02:00

100 lines
3.5 KiB
Python

# Copyright 2015 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Gradients for CuudnnRNN operators."""
from tensorflow.python.framework import ops
from tensorflow.python.ops import gen_cudnn_rnn_ops
@ops.RegisterGradient("CudnnRNN")
def _cudnn_rnn_backward(op: ops.Operation, *grads):
"""Gradients for the CudnnRNN op."""
if not op.get_attr("is_training"):
raise ValueError(
"To use CudnnRNN in gradients, is_training must be set to True.")
return gen_cudnn_rnn_ops.cudnn_rnn_backprop(
input=op.inputs[0],
input_h=op.inputs[1],
input_c=op.inputs[2],
params=op.inputs[3],
output=op.outputs[0],
output_h=op.outputs[1],
output_c=op.outputs[2],
output_backprop=grads[0],
output_h_backprop=grads[1],
output_c_backprop=grads[2],
reserve_space=op.outputs[3],
dropout=op.get_attr("dropout"),
seed=op.get_attr("seed"),
seed2=op.get_attr("seed2"),
rnn_mode=op.get_attr("rnn_mode"),
input_mode=op.get_attr("input_mode"),
direction=op.get_attr("direction"))
@ops.RegisterGradient("CudnnRNNV2")
def _cudnn_rnn_backward_v2(op: ops.Operation, *grad):
if not op.get_attr("is_training"):
raise ValueError(
"To use CudnnRNNV2 in gradients, is_training must be set to True.")
return gen_cudnn_rnn_ops.cudnn_rnn_backprop_v2(
input=op.inputs[0],
input_h=op.inputs[1],
input_c=op.inputs[2],
params=op.inputs[3],
output=op.outputs[0],
output_h=op.outputs[1],
output_c=op.outputs[2],
output_backprop=grad[0],
output_h_backprop=grad[1],
output_c_backprop=grad[2],
reserve_space=op.outputs[3],
host_reserved=op.outputs[4],
dropout=op.get_attr("dropout"),
seed=op.get_attr("seed"),
seed2=op.get_attr("seed2"),
rnn_mode=op.get_attr("rnn_mode"),
input_mode=op.get_attr("input_mode"),
direction=op.get_attr("direction"))
@ops.RegisterGradient("CudnnRNNV3")
def _cudnn_rnn_backwardv3(op: ops.Operation, *grads):
"""Gradients for the CudnnRNNV3 op."""
if not op.get_attr("is_training"):
raise ValueError(
"To use CudnnRNNV3 in gradients, is_training must be set to True.")
return gen_cudnn_rnn_ops.cudnn_rnn_backprop_v3(
input=op.inputs[0],
input_h=op.inputs[1],
input_c=op.inputs[2],
params=op.inputs[3],
sequence_lengths=op.inputs[4],
output=op.outputs[0],
output_h=op.outputs[1],
output_c=op.outputs[2],
output_backprop=grads[0],
output_h_backprop=grads[1],
output_c_backprop=grads[2],
reserve_space=op.outputs[3],
host_reserved=op.outputs[4],
dropout=op.get_attr("dropout"),
seed=op.get_attr("seed"),
seed2=op.get_attr("seed2"),
time_major=op.get_attr("time_major"),
num_proj=op.get_attr("num_proj"),
rnn_mode=op.get_attr("rnn_mode"),
input_mode=op.get_attr("input_mode"),
direction=op.get_attr("direction")) + (None,)