26 lines
840 B
Python
26 lines
840 B
Python
import pandas as pd
|
|
from sklearn.metrics import accuracy_score, precision_recall_fscore_support, mean_squared_error
|
|
from math import sqrt
|
|
import sys
|
|
|
|
# Load the predictions data
|
|
data = pd.read_csv('beer_review_sentiment_predictions.csv')
|
|
y_pred = data['Predictions']
|
|
y_test = data['Actual']
|
|
y_test_binary = (y_test >= 3).astype(int)
|
|
|
|
build_number = sys.argv[1]
|
|
|
|
# Calculate metrics
|
|
accuracy = accuracy_score(y_test_binary, y_pred.round())
|
|
precision, recall, f1, _ = precision_recall_fscore_support(y_test_binary, y_pred.round(), average='micro')
|
|
rmse = sqrt(mean_squared_error(y_test, y_pred))
|
|
|
|
print(f'Accuracy: {accuracy}')
|
|
print(f'Micro-avg Precision: {precision}')
|
|
print(f'Micro-avg Recall: {recall}')
|
|
print(f'F1 Score: {f1}')
|
|
print(f'RMSE: {rmse}')
|
|
|
|
with open(r"beer_metrics.txt", "a") as f:
|
|
f.write(f"{accuracy},{build_number}\n") |