ium_470607/lab5/eval/eval.py

47 lines
1.2 KiB
Python
Raw Normal View History

2021-05-14 21:52:14 +02:00
import csv
2021-05-02 22:01:32 +02:00
import pandas as pd
2021-05-15 22:30:25 +02:00
import seaborn as sns
import sys
import tensorflow
from tensorflow.keras import layers
# from tensorflow.keras.models import load_model
2021-05-02 22:01:32 +02:00
2021-05-15 22:30:25 +02:00
# X_test = pd.read_csv('test.csv')
#
# Y_test = X_test.pop('stabf')
# Y_test = pd.get_dummies(Y_test)
#
# model = load_model('grid-stability-dense.h5')
X_train = pd.read_csv('train.csv')
2021-05-02 22:01:32 +02:00
X_test = pd.read_csv('test.csv')
2021-05-15 22:30:25 +02:00
X_valid = pd.read_csv('valid.csv')
Y_train = X_train.pop('stabf')
Y_train = pd.get_dummies(Y_train)
2021-05-02 22:01:32 +02:00
2021-05-14 21:52:14 +02:00
Y_test = X_test.pop('stabf')
Y_test = pd.get_dummies(Y_test)
2021-05-02 22:01:32 +02:00
2021-05-15 22:30:25 +02:00
Y_valid = X_valid.pop('stabf')
Y_valid = pd.get_dummies(Y_valid)
model = tensorflow.keras.Sequential([
layers.Input(shape=(12,)),
layers.Dense(32),
layers.Dense(16),
layers.Dense(2, activation='softmax')
])
model.compile(
loss=tensorflow.keras.losses.BinaryCrossentropy(),
2021-05-15 22:45:51 +02:00
optimizer=tensorflow.keras.optimizers.Adam(),
2021-05-15 22:30:25 +02:00
metrics=[tensorflow.keras.metrics.BinaryAccuracy()])
history = model.fit(X_train, Y_train, epochs=2, validation_data=(X_valid, Y_valid))
2021-05-14 21:52:14 +02:00
results = model.evaluate(X_test, Y_test, batch_size=64)
2021-05-02 22:01:32 +02:00
2021-05-14 21:52:14 +02:00
with open('eval.csv', 'a', newline='') as fp:
wr = csv.writer(fp, dialect='excel')
wr.writerow(results)