136 lines
5.2 KiB
Python
136 lines
5.2 KiB
Python
|
class Node:
|
||
|
def __init__(self, state, parent='', action='', distance=0):
|
||
|
self.state = state
|
||
|
self.parent = parent
|
||
|
self.action = action
|
||
|
self.distance = distance
|
||
|
|
||
|
class Search:
|
||
|
def __init__(self, cell_size, cell_number):
|
||
|
self.cell_size = cell_size
|
||
|
self.cell_number = cell_number
|
||
|
|
||
|
def succ(self, state):
|
||
|
x = state[0]
|
||
|
y = state[1]
|
||
|
angle = state[2]
|
||
|
match(angle):
|
||
|
case 'UP':
|
||
|
possible = [['left', x, y, 'LEFT'], ['right', x, y, 'RIGHT']]
|
||
|
if y != 0: possible.append(['move', x, y - 1, 'UP'])
|
||
|
return possible
|
||
|
case 'RIGHT':
|
||
|
possible = [['left', x, y, 'UP'], ['right', x, y, 'DOWN']]
|
||
|
if x != (self.cell_number-1): possible.append(['move', x + 1, y, 'RIGHT'])
|
||
|
return possible
|
||
|
case 'DOWN':
|
||
|
possible = [['left', x, y, 'RIGHT'], ['right', x, y, 'LEFT']]
|
||
|
if y != (self.cell_number-1): possible.append(['move', x, y + 1, 'DOWN'])
|
||
|
return possible
|
||
|
case 'LEFT':
|
||
|
possible = [['left', x, y, 'DOWN'], ['right', x, y, 'UP']]
|
||
|
if x != 0: possible.append(['move', x - 1, y, 'LEFT'])
|
||
|
return possible
|
||
|
|
||
|
def cost(self, node, stones, goal, flowers):
|
||
|
# cost = node.distance
|
||
|
cost = 0
|
||
|
# cost += 10 if stones[node.state[0], node.state[1]] == 1 else 1
|
||
|
cost += 1000 if (node.state[0], node.state[1]) in stones else 1
|
||
|
cost += 10 if ((node.state[0]), (node.state[1])) in flowers else 1
|
||
|
|
||
|
if node.parent:
|
||
|
node = node.parent
|
||
|
cost += node.distance # should return only elem.action in prod
|
||
|
return cost
|
||
|
|
||
|
def heuristic(self, node, goal):
|
||
|
return abs(node.state[0] - goal[0]) + abs(node.state[1] - goal[1])
|
||
|
|
||
|
#bandaid to know about stones
|
||
|
def astarsearch(self, istate, goaltest, stone_list, plant_list):
|
||
|
|
||
|
#to be expanded
|
||
|
def cost_old(x, y):
|
||
|
if (x, y) in stones:
|
||
|
return 10
|
||
|
else:
|
||
|
return 1
|
||
|
|
||
|
x = istate[0]
|
||
|
y = istate[1]
|
||
|
angle = istate[2]
|
||
|
stones = []
|
||
|
flowers = []
|
||
|
|
||
|
for obj in stone_list:
|
||
|
stones.append((obj.xy[0]*50, obj.xy[1]*50))
|
||
|
for obj in plant_list:
|
||
|
if obj.name == 'flower':
|
||
|
flowers.append((obj.xy[0]*50, obj.xy[1]*50))
|
||
|
|
||
|
# stones = [(x*50, y*50) for (x, y) in stone_list]
|
||
|
# flowers = [(x*50, y*50) for (x, y) in plant_list]
|
||
|
|
||
|
print(stones)
|
||
|
|
||
|
# fringe = [(Node([x, y, angle]), cost_old(x, y))] # queue (moves/states to check)
|
||
|
fringe = [(Node([x, y, angle]))] # queue (moves/states to check)
|
||
|
fringe[0].distance = self.cost(fringe[0], stones, goaltest, flowers)
|
||
|
fringe.append((Node([x, y, angle]), self.cost(fringe[0], stones, goaltest, flowers)))
|
||
|
fringe.pop(0)
|
||
|
|
||
|
explored = []
|
||
|
|
||
|
while True:
|
||
|
if len(fringe) == 0:
|
||
|
return False
|
||
|
|
||
|
fringe.sort(key=lambda x: x[1])
|
||
|
elem = fringe.pop(0)[0]
|
||
|
|
||
|
# if goal_test(elem.state):
|
||
|
# return
|
||
|
# print(elem.state[0], elem.state[1], elem.state[2])
|
||
|
if elem.state[0] == goaltest[0] and elem.state[1] == goaltest[1]: # checks if we reached the given point
|
||
|
steps = []
|
||
|
while elem.parent:
|
||
|
steps.append([elem.action, elem.state[0], elem.state[1]]) # should return only elem.action in prod
|
||
|
elem = elem.parent
|
||
|
|
||
|
steps.reverse()
|
||
|
print(steps) # only for dev
|
||
|
return steps
|
||
|
|
||
|
explored.append(elem.state)
|
||
|
|
||
|
for (action, state_x, state_y, state_angle) in self.succ(elem.state):
|
||
|
x = Node([state_x, state_y, state_angle], elem, action)
|
||
|
x.parent = elem
|
||
|
|
||
|
priority = self.cost(elem, stones, goaltest, flowers) + self.heuristic(elem, goaltest)
|
||
|
elem.distance = priority
|
||
|
# priority = cost_old(x, y) + self.heuristic(elem, goaltest)
|
||
|
fringe_states = [node.state for (node, p) in fringe]
|
||
|
|
||
|
if x.state not in fringe_states and x.state not in explored:
|
||
|
fringe.append((x, priority))
|
||
|
elif x.state in fringe_states:
|
||
|
for i in range(len(fringe)):
|
||
|
if fringe[i][0].state == x.state:
|
||
|
if fringe[i][1] > priority:
|
||
|
fringe[i] = (x, priority)
|
||
|
|
||
|
|
||
|
def closest_point(self, x, y, name, plant_list):
|
||
|
self.max_distance = self.cell_number*self.cell_number
|
||
|
for obj in plant_list:
|
||
|
if obj.name == name:
|
||
|
if obj.state == 0:
|
||
|
self.distance = (abs(obj.xy[0] - x) + abs(obj.xy[1] - y))
|
||
|
if self.distance <= self.max_distance:
|
||
|
self.max_distance = self.distance
|
||
|
x_close = obj.xy[0]
|
||
|
y_close = obj.xy[1]
|
||
|
#print("distance: ",self.distance, obj.xy[0], "+", obj.xy[1], "-" ,x, "+",y)
|
||
|
return (x_close, y_close)
|