Compare commits
11 Commits
Author | SHA1 | Date | |
---|---|---|---|
edf1e43d33 | |||
0b33ff1803 | |||
86be72ba33 | |||
da73e223e3 | |||
e27acbacaf | |||
28bf53c037 | |||
931e40d88f | |||
d4e382a7f0 | |||
c0c5d3adcd | |||
9715493351 | |||
0099d64e54 |
3
.gitignore
vendored
@ -1,3 +0,0 @@
|
|||||||
.idea
|
|
||||||
.DS_Store
|
|
||||||
__pycache__
|
|
BIN
__pycache__/blocks.cpython-37.pyc
Normal file
BIN
__pycache__/land.cpython-37.pyc
Normal file
BIN
__pycache__/soil.cpython-37.pyc
Normal file
BIN
__pycache__/tractor.cpython-37.pyc
Normal file
121
main.py
@ -4,10 +4,90 @@ import random
|
|||||||
import land
|
import land
|
||||||
import tractor
|
import tractor
|
||||||
import blocks
|
import blocks
|
||||||
import nn
|
|
||||||
import astar_search
|
import astar_search
|
||||||
|
import neural_network.inference
|
||||||
from pygame.locals import *
|
from pygame.locals import *
|
||||||
import numpy as np
|
|
||||||
|
examples = [
|
||||||
|
['piasek', 'sucha', 'jalowa', 'żółty'],
|
||||||
|
['czarnoziem', 'wilgotna', 'bogata', 'brazowa'],
|
||||||
|
['rzedzina', 'wilgotna', 'bogata', 'zielona'],
|
||||||
|
['gleby murszowe', 'wilgotna', 'bogata', 'szara'],
|
||||||
|
['pustynne gleby', 'sucha', 'jalowa', 'pomarańczowa'],
|
||||||
|
['torfowiska', 'sucha', 'jalowa', 'czerwona']
|
||||||
|
]
|
||||||
|
|
||||||
|
attributes = ['typ_gleby', 'wilgotność', 'zawartość_składników', 'kolor']
|
||||||
|
|
||||||
|
# Tworzenie obiektu TreeLearn i nauka drzewa decyzyjnego
|
||||||
|
# tree_learner = TreeLearn()
|
||||||
|
# default_class = 'nieznane'
|
||||||
|
|
||||||
|
# tree_learner.train(examples, attributes, default_class)
|
||||||
|
|
||||||
|
class TreeLearn:
|
||||||
|
def __init__(self):
|
||||||
|
self.tree = None
|
||||||
|
|
||||||
|
def train(self, examples, attributes, default_class):
|
||||||
|
self.tree = self.build_tree(examples, attributes, default_class)
|
||||||
|
|
||||||
|
def build_tree(self, examples, attributes, default_class):
|
||||||
|
if not examples:
|
||||||
|
return Node(default_class)
|
||||||
|
|
||||||
|
if self.all_same_class(examples):
|
||||||
|
return Node(examples[0][-1])
|
||||||
|
|
||||||
|
if not attributes:
|
||||||
|
class_counts = self.get_class_counts(examples)
|
||||||
|
default_class = max(class_counts, key=class_counts.get)
|
||||||
|
return Node(default_class)
|
||||||
|
|
||||||
|
best_attribute = self.choose_attribute(examples, attributes)
|
||||||
|
root = Node(best_attribute)
|
||||||
|
|
||||||
|
attribute_values = self.get_attribute_values(examples, best_attribute)
|
||||||
|
|
||||||
|
for value in attribute_values:
|
||||||
|
new_examples = self.filter_examples(examples, best_attribute, value)
|
||||||
|
new_attributes = attributes[:]
|
||||||
|
new_attributes.remove(best_attribute)
|
||||||
|
new_default_class = max(self.get_class_counts(new_examples), key=lambda k: class_counts.get(k, 0))
|
||||||
|
|
||||||
|
subtree = self.build_tree(new_examples, new_attributes, new_default_class)
|
||||||
|
root.add_child(value, subtree)
|
||||||
|
|
||||||
|
return root
|
||||||
|
|
||||||
|
def all_same_class(self, examples):
|
||||||
|
return len(set([example[-1] for example in examples])) == 1
|
||||||
|
|
||||||
|
def get_class_counts(self, examples):
|
||||||
|
class_counts = {}
|
||||||
|
for example in examples:
|
||||||
|
class_label = example[-1]
|
||||||
|
class_counts[class_label] = class_counts.get(class_label, 0) + 1
|
||||||
|
return class_counts
|
||||||
|
|
||||||
|
def choose_attribute(self, examples, attributes):
|
||||||
|
# Placeholder for attribute selection logic
|
||||||
|
return attributes[0]
|
||||||
|
|
||||||
|
def get_attribute_values(self, examples, attribute):
|
||||||
|
return list(set([example[attribute] for example in examples]))
|
||||||
|
|
||||||
|
def filter_examples(self, examples, attribute, value):
|
||||||
|
return [example for example in examples if example[attribute] == value]
|
||||||
|
|
||||||
|
|
||||||
|
class Node:
|
||||||
|
def __init__(self, label):
|
||||||
|
self.label = label
|
||||||
|
self.children = {}
|
||||||
|
|
||||||
|
def add_child(self, value, child):
|
||||||
|
self.children[value] = child
|
||||||
|
|
||||||
|
|
||||||
class Game:
|
class Game:
|
||||||
@ -25,8 +105,6 @@ class Game:
|
|||||||
self.grass_body = []
|
self.grass_body = []
|
||||||
self.red_block = [] #aim block
|
self.red_block = [] #aim block
|
||||||
|
|
||||||
#self.one_body = []
|
|
||||||
|
|
||||||
self.fawn_seed_body = []
|
self.fawn_seed_body = []
|
||||||
self.fawn_wheat_body = []
|
self.fawn_wheat_body = []
|
||||||
|
|
||||||
@ -63,15 +141,6 @@ class Game:
|
|||||||
# self.potato = blocks.Blocks(self.surface, self.cell_size)
|
# self.potato = blocks.Blocks(self.surface, self.cell_size)
|
||||||
# self.potato.locate_soil('black earth', 6, 1, [])
|
# self.potato.locate_soil('black earth', 6, 1, [])
|
||||||
|
|
||||||
#class_names = ['Pumpkin', 'Tomato', 'Carrot']
|
|
||||||
|
|
||||||
self.neural_network = nn.NNModel("neural_network/save/second_model.pth")
|
|
||||||
|
|
||||||
# self.pumpkin_batch = self.neural_network.input_image("resources/pampkin.png")
|
|
||||||
# self.tomato_batch = self.neural_network.input_image("resources/tomato.png")
|
|
||||||
# self.carrot_batch = self.neural_network.input_image("resources/carrot.png")
|
|
||||||
|
|
||||||
|
|
||||||
self.tractor = tractor.Tractor(self.surface, self.cell_size)
|
self.tractor = tractor.Tractor(self.surface, self.cell_size)
|
||||||
self.tractor.draw()
|
self.tractor.draw()
|
||||||
|
|
||||||
@ -83,10 +152,13 @@ class Game:
|
|||||||
clock = pygame.time.Clock()
|
clock = pygame.time.Clock()
|
||||||
|
|
||||||
move_tractor_event = pygame.USEREVENT + 1
|
move_tractor_event = pygame.USEREVENT + 1
|
||||||
pygame.time.set_timer(move_tractor_event, 100) # tractor moves every 1000 ms
|
pygame.time.set_timer(move_tractor_event, 500) # tractor moves every 1000 ms
|
||||||
tractor_next_moves = []
|
tractor_next_moves = []
|
||||||
astar_search_object = astar_search.Search(self.cell_size, self.cell_number)
|
astar_search_object = astar_search.Search(self.cell_size, self.cell_number)
|
||||||
|
|
||||||
|
veggies = dict()
|
||||||
|
veggies_debug = dict()
|
||||||
|
|
||||||
while running:
|
while running:
|
||||||
clock.tick(60) # manual fps control not to overwork the computer
|
clock.tick(60) # manual fps control not to overwork the computer
|
||||||
for event in pygame.event.get():
|
for event in pygame.event.get():
|
||||||
@ -114,21 +186,28 @@ class Game:
|
|||||||
random_x = random.randrange(0, self.cell_number * self.cell_size, 50)
|
random_x = random.randrange(0, self.cell_number * self.cell_size, 50)
|
||||||
random_y = random.randrange(0, self.cell_number * self.cell_size, 50)
|
random_y = random.randrange(0, self.cell_number * self.cell_size, 50)
|
||||||
print("Generated target: ",random_x, random_y)
|
print("Generated target: ",random_x, random_y)
|
||||||
#aim-blue block
|
|
||||||
if self.red_block:
|
if self.red_block:
|
||||||
self.red_block.pop()
|
self.red_block.pop()
|
||||||
self.red_block.append([random_x/50, random_y/50])
|
self.red_block.append([random_x/50, random_y/50])
|
||||||
|
|
||||||
self.path_image = "resources/2.png"
|
|
||||||
self.aim_batch = self.neural_network.input_image(self.path_image)
|
|
||||||
self.predicate = self.neural_network.predicte(self.aim_batch)
|
|
||||||
|
|
||||||
|
|
||||||
# below line should be later moved into tractor.py
|
# below line should be later moved into tractor.py
|
||||||
angles = {0: 'UP', 90: 'RIGHT', 270: 'LEFT', 180: 'DOWN'}
|
angles = {0: 'UP', 90: 'RIGHT', 270: 'LEFT', 180: 'DOWN'}
|
||||||
#bandaid to know about stones
|
#bandaid to know about stones
|
||||||
tractor_next_moves = astar_search_object.astarsearch(
|
tractor_next_moves = astar_search_object.astarsearch(
|
||||||
[self.tractor.x, self.tractor.y, angles[self.tractor.angle]], [random_x, random_y], self.stone_body, self.flower_body)
|
[self.tractor.x, self.tractor.y, angles[self.tractor.angle]], [random_x, random_y], self.stone_body, self.flower_body)
|
||||||
|
current_veggie = next(os.walk('./neural_network/images/test'))[1][random.randint(0, len(next(os.walk('./neural_network/images/test'))[1])-1)]
|
||||||
|
if(current_veggie in veggies_debug):
|
||||||
|
veggies_debug[current_veggie]+=1
|
||||||
|
else:
|
||||||
|
veggies_debug[current_veggie] = 1
|
||||||
|
|
||||||
|
current_veggie_example = next(os.walk(f'./neural_network/images/test/{current_veggie}'))[2][random.randint(0, len(next(os.walk(f'./neural_network/images/test/{current_veggie}'))[2])-1)]
|
||||||
|
predicted_veggie = neural_network.inference.main(f"./neural_network/images/test/{current_veggie}/{current_veggie_example}")
|
||||||
|
if predicted_veggie in veggies:
|
||||||
|
veggies[predicted_veggie]+=1
|
||||||
|
else:
|
||||||
|
veggies[predicted_veggie] = 1
|
||||||
|
print("Debug veggies: ", veggies_debug, "Predicted veggies: ", veggies)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.tractor.move(tractor_next_moves.pop(0)[0], self.cell_size, self.cell_number)
|
self.tractor.move(tractor_next_moves.pop(0)[0], self.cell_size, self.cell_number)
|
||||||
elif event.type == QUIT:
|
elif event.type == QUIT:
|
||||||
|
Before Width: | Height: | Size: 58 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 10 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 28 KiB |
Before Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 65 KiB |
Before Width: | Height: | Size: 64 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 7.5 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 69 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 62 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 16 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 34 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 53 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 10 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 23 KiB |
Before Width: | Height: | Size: 41 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 64 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 49 KiB |
Before Width: | Height: | Size: 8.9 KiB |
Before Width: | Height: | Size: 7.6 KiB |
Before Width: | Height: | Size: 48 KiB |
Before Width: | Height: | Size: 44 KiB |
Before Width: | Height: | Size: 24 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 12 KiB |
Before Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 66 KiB |
Before Width: | Height: | Size: 13 KiB |
Before Width: | Height: | Size: 65 KiB |
Before Width: | Height: | Size: 60 KiB |
Before Width: | Height: | Size: 70 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 9.5 KiB |
Before Width: | Height: | Size: 64 KiB |
Before Width: | Height: | Size: 36 KiB |
Before Width: | Height: | Size: 8.8 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 11 KiB |
Before Width: | Height: | Size: 9.8 KiB |
Before Width: | Height: | Size: 7.6 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 62 KiB |
Before Width: | Height: | Size: 7.5 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 19 KiB |
Before Width: | Height: | Size: 21 KiB |
Before Width: | Height: | Size: 61 KiB |
Before Width: | Height: | Size: 22 KiB |
Before Width: | Height: | Size: 46 KiB |
Before Width: | Height: | Size: 25 KiB |
Before Width: | Height: | Size: 20 KiB |
Before Width: | Height: | Size: 52 KiB |
Before Width: | Height: | Size: 17 KiB |
Before Width: | Height: | Size: 18 KiB |
Before Width: | Height: | Size: 20 KiB |