si23traktor/neural_network/nn.py
Aliaksei Brown 3c5b05a7bb nn update 3
2023-06-05 16:18:20 +02:00

112 lines
3.9 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
from torchvision import datasets, models, transforms
import multiprocessing
def main():
# Set the device to use (GPU if available, otherwise CPU)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Define data transformations
data_transforms = {
"train": transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
"validation": transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
}
# Set the path to your vegetable images folder
data_dir = "neural_network/dataset/vegetables"
# Load the dataset from the folder
image_datasets = {x: datasets.ImageFolder(f"{data_dir}/{x}", data_transforms[x])
for x in ["train", "validation"]}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=multiprocessing.cpu_count())
for x in ["train", "validation"]}
dataset_sizes = {x: len(image_datasets[x]) for x in ["train", "validation"]}
class_names = image_datasets["train"].classes
print(class_names)
num_classes = len(class_names)
print(num_classes)
# Load a pre-trained ResNet model
model = models.resnet18(pretrained=True)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, num_classes)
model = model.to(device)
# Define the loss function and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
# Load the previously trained model state
#checkpoint = torch.load("neural_network/save/trained_model.pth")
#model.load_state_dict(checkpoint)
# Train the model
def train_model(model, criterion, optimizer, num_epochs=2):
best_model_wts = None # Initialize the variable
best_acc = 0.0
for epoch in range(num_epochs):
print(f"Epoch {epoch+1}/{num_epochs}")
print("-" * 10)
for phase in ["train", "validation"]:
if phase == "train":
model.train()
else:
model.eval()
running_loss = 0.0
running_corrects = 0
for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)
labels = labels.to(device)
optimizer.zero_grad()
with torch.set_grad_enabled(phase == "train"):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
if phase == "train":
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print(f"{phase} Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}")
if phase == "validation" and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = model.state_dict()
torch.save(best_model_wts, "neural_network/save/trained_model.pth")
# Start training
train_model(model, criterion, optimizer, num_epochs=2)
if __name__ == '__main__':
multiprocessing.set_start_method('spawn') # Set start method for multiprocessing
main()