Compare commits

..

3 Commits

Author SHA1 Message Date
df9fa479c6 Upload files to "ai-wozek" 2024-06-13 10:51:10 +02:00
a024da6e00 Delete wozek.py 2024-06-13 10:50:56 +02:00
ae893f20d8 Upload files to "/" 2024-06-13 10:50:18 +02:00
971 changed files with 482 additions and 993 deletions

View File

@ -1,11 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="accountSettings">
<option name="activeRegion" value="us-east-1" />
<option name="recentlyUsedRegions">
<list>
<option value="us-east-1" />
</list>
</option>
</component>
</project>

View File

@ -1,7 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="Black">
<option name="sdkName" value="Python 3.11 (ai-wozek) (2)" />
</component>
<component name="ProjectRootManager" version="2" project-jdk-name="Python 3.11 (ai-wozek)" project-jdk-type="Python SDK" />
</project>

View File

@ -1,24 +1,18 @@
<component name="ProjectRunConfigurationManager"> <component name="ProjectRunConfigurationManager">
<configuration default="false" name="wozek" type="PythonConfigurationType" factoryName="Python" nameIsGenerated="true"> <configuration default="false" name="wozek" type="PythonConfigurationType" factoryName="Python" nameIsGenerated="true">
<module name="wozek" /> <module name="wozek" />
<option name="ENV_FILES" value="" />
<option name="INTERPRETER_OPTIONS" value="" /> <option name="INTERPRETER_OPTIONS" value="" />
<option name="PARENT_ENVS" value="true" /> <option name="PARENT_ENVS" value="true" />
<envs> <envs>
<env name="PYTHONUNBUFFERED" value="1" /> <env name="PYTHONUNBUFFERED" value="1" />
</envs> </envs>
<option name="SDK_HOME" value="" /> <option name="SDK_HOME" value="" />
<option name="SDK_NAME" value="Python 3.11 (ai-wozek) (2)" /> <option name="SDK_NAME" value="Python 3.10" />
<option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" /> <option name="WORKING_DIRECTORY" value="$PROJECT_DIR$" />
<option name="IS_MODULE_SDK" value="false" /> <option name="IS_MODULE_SDK" value="false" />
<option name="ADD_CONTENT_ROOTS" value="true" /> <option name="ADD_CONTENT_ROOTS" value="true" />
<option name="ADD_SOURCE_ROOTS" value="true" /> <option name="ADD_SOURCE_ROOTS" value="true" />
<EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" /> <EXTENSION ID="PythonCoverageRunConfigurationExtension" runner="coverage.py" />
<EXTENSION ID="software.aws.toolkits.jetbrains.core.execution.PythonAwsConnectionExtension">
<option name="credential" />
<option name="region" />
<option name="useCurrentConnection" value="false" />
</EXTENSION>
<option name="SCRIPT_NAME" value="$PROJECT_DIR$/wozek.py" /> <option name="SCRIPT_NAME" value="$PROJECT_DIR$/wozek.py" />
<option name="PARAMETERS" value="" /> <option name="PARAMETERS" value="" />
<option name="SHOW_COMMAND_LINE" value="false" /> <option name="SHOW_COMMAND_LINE" value="false" />

View File

@ -1,6 +0,0 @@
<?xml version="1.0" encoding="UTF-8"?>
<project version="4">
<component name="VcsDirectoryMappings">
<mapping directory="$PROJECT_DIR$/.." vcs="Git" />
</component>
</project>

View File

@ -1,10 +1,7 @@
<?xml version="1.0" encoding="UTF-8"?> <?xml version="1.0" encoding="UTF-8"?>
<module type="PYTHON_MODULE" version="4"> <module type="PYTHON_MODULE" version="4">
<component name="NewModuleRootManager"> <component name="NewModuleRootManager">
<content url="file://$MODULE_DIR$"> <content url="file://$MODULE_DIR$" />
<excludeFolder url="file://$MODULE_DIR$/venv" />
</content>
<orderEntry type="inheritedJdk" />
<orderEntry type="sourceFolder" forTests="false" /> <orderEntry type="sourceFolder" forTests="false" />
</component> </component>
</module> </module>

View File

@ -1 +0,0 @@
,DESKTOP-REF7T1M/abc,DESKTOP-REF7T1M,16.06.2024 22:58,file:///C:/Users/abc/AppData/Roaming/LibreOffice/4;

View File

View File

@ -1,31 +1,12 @@
import random
from glob import glob
import numpy as np
class Cargo: class Cargo:
def __init__(self, height,width,depth,weight,damage,label_state,content,value,position): def __init__(self, name, category, size, weight):
self.height=height self.name = name
self.width=width self.size = size
self.depth=depth
self.weight = weight self.weight = weight
self.damage=damage self.category = category
self.label_state=label_state
self.content=content
self.value=value
self.position=position
def contentSplit(self):
if self.content=='fruits':
test=glob('./siec/train/fragile/*')
self.image=np.random.choice(test)
elif self.content=='nuclear_waste':
test=glob('./siec/train/toxic/*')
self.image = np.random.choice(test)
elif self.content=='clothes':
test = glob('./siec/train/flammable/*')
self.image = np.random.choice(test)
else:
self.image='./fruit.png'
print(self.image)
class Clothes(Cargo): class Clothes(Cargo):
def __init__(self, name, size, weight, fragility): def __init__(self, name, size, weight, fragility):

View File

@ -1,74 +0,0 @@
digraph {
root [label=root]
Label_State [label=Label_State]
no [label=no]
Label_State -> no [label=""]
Height [label=Height]
no -> Height [label=""]
no [label=no shape=box]
Height -> no [label=medium]
no [label=no shape=box]
Height -> no [label=big]
small [label=small]
Height -> small [label=""]
Width [label=Width]
small -> Width [label=""]
small [label=small]
Width -> small [label=""]
Depth [label=Depth]
small -> Depth [label=""]
no [label=no shape=box]
Depth -> no [label=big]
yes [label=yes shape=box]
Depth -> yes [label=medium]
no [label=no shape=box]
Width -> no [label=big]
medium [label=medium]
Width -> medium [label=""]
Depth [label=Depth]
medium -> Depth [label=""]
no [label=no shape=box]
Depth -> no [label=big]
yes [label=yes shape=box]
Depth -> yes [label=medium]
yes [label=yes shape=box]
Depth -> yes [label=small]
yes [label=yes]
Label_State -> yes [label=""]
Damage [label=Damage]
yes -> Damage [label=""]
yes [label=yes shape=box]
Damage -> yes [label=no]
yes [label=yes]
Damage -> yes [label=""]
Height [label=Height]
yes -> Height [label=""]
no [label=no shape=box]
Height -> no [label=medium]
no [label=no shape=box]
Height -> no [label=big]
small [label=small]
Height -> small [label=""]
Width [label=Width]
small -> Width [label=""]
no [label=no shape=box]
Width -> no [label=big]
small [label=small]
Width -> small [label=""]
Depth [label=Depth]
small -> Depth [label=""]
yes [label=yes shape=box]
Depth -> yes [label=medium]
no [label=no shape=box]
Depth -> no [label=big]
yes [label=yes shape=box]
Depth -> yes [label=small]
medium [label=medium]
Width -> medium [label=""]
Value [label=Value]
medium -> Value [label=""]
yes [label=yes shape=box]
Value -> yes [label=cheap]
no [label=no shape=box]
Value -> no [label=expensive]
}

View File

@ -1,40 +0,0 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
import timm
import matplotlib.pyplot as plt # For data viz
import pandas as pd
import numpy as np
import sys
class LabelDataset(Dataset):
def __init__(self, dataDirectory,transform=None):
self.data=ImageFolder(dataDirectory,transform=transform)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return self.data[idx]
@property
def classes(self):
return self.data.classes
classname={v:k for k,v in ImageFolder('./train').class_to_idx.items()}
transform=transforms.Compose([
transforms.Resize((128,128)),
transforms.ToTensor(),
])
dataset=LabelDataset('./train',transform)
dataloader=DataLoader(dataset,batch_size=4, shuffle=True)
valset=LabelDataset('./val',transform)
valloader=DataLoader(valset,batch_size=4,shuffle=False)
for images,labels in dataloader:
break

Binary file not shown.

Binary file not shown.

View File

@ -1,114 +0,0 @@
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets import ImageFolder
import timm
from PIL import Image
import matplotlib.pyplot as plt # For data viz
import pandas as pd
import numpy as np
import sys
from siec import dataset
from glob import glob
class LabelClassifier(nn.Module):
def __init__(self,num_classes=3):
super(LabelClassifier, self).__init__()
self.model=timm.create_model('efficientnet_b0',pretrained=True)
self.features = nn.Sequential(*list(self.model.children())[:-1])
out_size=1280
self.classifier=nn.Linear(out_size,num_classes)
def forward(self,x):
x=self.features(x)
output=self.classifier(x)
return output
model=torch.load("./model")
criterion=nn.CrossEntropyLoss()
optimizer=optim.Adam(model.parameters(),lr=0.0005)
print(criterion(model(dataset.images),dataset.labels))
num_epochs=0
trainLosses=[]
valLosses=[]
device=torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
for epoch in range(num_epochs):
model.train()
runningLoss=0.0
for images,labels in dataset.dataloader:
images, labels=images.to(device), labels.to(device)
optimizer.zero_grad()
outputs=model(images)
loss=criterion(outputs,labels)
loss.backward()
optimizer.step()
runningLoss+=loss.item()*images.size(0)
trainLoss=runningLoss/len(dataset.dataloader.dataset)
trainLosses.append(trainLoss)
model.eval()
runningLoss=0.0
with torch.no_grad():
for images, labels in dataset.valloader:
images, labels = images.to(device), labels.to(device)
outputs=model(images)
loss=criterion(outputs,labels)
runningLoss+=loss.item()*images.size(0)
valLoss=runningLoss/len(dataset.valloader.dataset)
valLosses.append(valLoss)
print(f"Epoch {epoch + 1}/{num_epochs} - Train loss: {trainLoss}, Validation loss: {valLoss}")
modell=torch.jit.script(model)
modell.save('model.pt')
def preprocess_image(image_path, transform):
image = Image.open(image_path).convert("RGB")
return image, transform(image).unsqueeze(0)
# Predict using the model
def predict(model, image_tensor, device):
model.eval()
with torch.no_grad():
image_tensor = image_tensor.to(device)
outputs = model(image_tensor)
probabilities = torch.nn.functional.softmax(outputs, dim=1)
print(outputs)
return probabilities.cpu().numpy().flatten()
# Visualization
def visualize_predictions(original_image, probabilities, class_names):
fig, axarr = plt.subplots(1, 2, figsize=(14, 7))
axarr[0].imshow(original_image)
axarr[0].axis("off")
# Display predictions
axarr[1].barh(class_names, probabilities)
axarr[1].set_xlabel("Probability")
axarr[1].set_title("Class Predictions")
axarr[1].set_xlim(0, 1)
plt.tight_layout()
plt.show()
transform = transforms.Compose([
transforms.Resize((128, 128)),
transforms.ToTensor()
])
test_images = glob('./train/*/*')
test_examples = np.random.choice(test_images, 10)
for example in test_examples:
model.eval()
original_image, image_tensor = preprocess_image(example, transform)
probabilities = predict(model, image_tensor, device)
print(probabilities)
# Assuming dataset.classes gives the class names
class_names = dataset.dataset.classes
visualize_predictions(original_image, probabilities, class_names)
model(image_tensor)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 18 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 33 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 92 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 75 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 32 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 34 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 26 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.4 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.6 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.2 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.5 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 8.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 11 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.0 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.3 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 9.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.7 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 5.8 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.1 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 13 KiB

Some files were not shown because too many files have changed in this diff Show More