some code cleaning
This commit is contained in:
parent
58524a59a7
commit
03724c3cf4
@ -52,7 +52,6 @@ class Tile(pygame.sprite.Sprite):
|
||||
|
||||
self.prediction = self.predict(model, image_transforms, self.image_path, classes)
|
||||
|
||||
|
||||
else:
|
||||
if random.randint(1, 10) % 3 == 0:
|
||||
self.set_type('water')
|
||||
@ -79,9 +78,7 @@ class Tile(pygame.sprite.Sprite):
|
||||
files = [f for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))]
|
||||
random_file = random.choice(files)
|
||||
|
||||
#image_path = os.path.join(folder_path, random_file)
|
||||
image_path = folder_path + "/" + random_file
|
||||
#print(image_path)
|
||||
return image_path
|
||||
|
||||
def set_type(self, type):
|
||||
@ -110,7 +107,6 @@ class Tile(pygame.sprite.Sprite):
|
||||
output = model(image)
|
||||
_, predicted = torch.max(output.data, 1)
|
||||
|
||||
#print("Rozpoznano: ", classes[predicted.item()])
|
||||
result = classes[predicted.item()]
|
||||
if result == "ziemniak":
|
||||
result = 'marchew'
|
||||
|
@ -1,36 +0,0 @@
|
||||
# import torch
|
||||
# import torchvision.transforms as transforms
|
||||
# from PIL import Image
|
||||
|
||||
# classes = [
|
||||
# "bób", "brokuł", "brukselka", "burak", "cebula",
|
||||
# "cukinia", "dynia", "fasola", "groch", "jarmuż",
|
||||
# "kalafior", "kalarepa", "kapusta", "marchew",
|
||||
# "ogórek", "papryka", "pietruszka", "pomidor",
|
||||
# "por", "rzepa", "rzodkiewka", "sałata", "seler",
|
||||
# "szpinak", "ziemniak"]
|
||||
|
||||
# model = torch.load("best_model.pth")
|
||||
|
||||
# mean = [0.5322, 0.5120, 0.3696]
|
||||
# std = [0.2487, 0.2436, 0.2531]
|
||||
|
||||
# image_transforms = transforms.Compose([
|
||||
# transforms.Resize((224, 224)),
|
||||
# transforms.ToTensor(),
|
||||
# transforms.Normalize(torch.Tensor(mean),torch.Tensor(std))
|
||||
# ])
|
||||
|
||||
# def predict(model, image_transforms, image_path, classes):
|
||||
# model = model.eval()
|
||||
# image = Image.open(image_path)
|
||||
# print(image_path)
|
||||
# image = image_transforms(image).float()
|
||||
# image = image.unsqueeze(0)
|
||||
|
||||
# output = model(image)
|
||||
# _, predicted = torch.max(output.data, 1)
|
||||
|
||||
# print(classes[predicted.item()])
|
||||
|
||||
# predict(model, image_transforms, "veggies/marchew_118.jpg", classes)
|
Loading…
Reference in New Issue
Block a user