analiza-danych-sportowych/.ipynb_checkpoints/Wizualizacja-checkpoint.ipynb

168 lines
5.3 KiB
Plaintext
Raw Normal View History

2024-01-12 17:27:21 +01:00
{
"cells": [
{
"cell_type": "code",
"execution_count": 67,
"id": "9d832900",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import re\n",
"\n",
"pd.set_option('display.max_rows', 10000)\n",
"pd.set_option('display.max_columns', 10000)\n",
"\n",
"file_path = 'games.csv'\n",
"\n",
"data = pd.read_csv(file_path) "
]
},
{
"cell_type": "code",
"execution_count": 84,
"id": "84d9af06",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Qd1', 'Qc2', 'Qc3', 'Qb3', 'Qb7+', 'Qxd7#']\n",
"['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6']\n",
"Square names from list1: ['d1', 'c2', 'c3', 'b3', 'b7', 'd7']\n",
"Square names from list2: ['d1', 'd4', 'd1', 'a4', 'h4', 'g5', 'g3', 'g6']\n"
]
}
],
"source": [
"import re\n",
"\n",
"def extract_square_names(moves_list):\n",
" square_names = []\n",
"\n",
" for move in moves_list:\n",
" # Use a regular expression to match the chess square name\n",
" match = re.search(r'[a-h][1-8]', move)\n",
" if match:\n",
" square_names.append(match.group())\n",
"\n",
" return square_names"
]
},
{
"cell_type": "code",
"execution_count": 85,
"id": "1f11b18c",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6']\n",
"White queen moves: ['d1', 'd4', 'd1', 'a4', 'h4', 'g5', 'g3', 'g6']\n",
"['Qd8', 'Qe7', 'Qc7', 'Qg7', 'Qxg6']\n",
"Black queen moves: ['d8', 'e7', 'c7', 'g7', 'g6']\n"
]
}
],
"source": [
"opening_number_of_games = data['opening_name'].value_counts()\n",
"opening_number_of_games.head(10)\n",
"# openings = ['Sicilian Defense', 'Old Benoni Defense', \"Queen's Pawn Game: Mason Attack\"]\n",
"\n",
"old_benoni_games = data[data['opening_name'].str.contains('Old Benoni Defense', case = False)]\n",
"old_benoni_count = len(old_benoni_games)\n",
"\n",
"for text in old_benoni_games.head(1)['moves']:\n",
" moves = text.split()\n",
" white_queen_moves = ['Qd1']\n",
" black_queen_moves = ['Qd8']\n",
" for idx, move in enumerate(moves):\n",
" if move.startswith(\"Q\"):\n",
" if idx % 2 == 0:\n",
" white_queen_moves.append(move)\n",
" if idx % 2 == 1:\n",
" black_queen_moves.append(move)\n",
"# print(f'White queen moves: {white_queen_moves}')\n",
"# print(f'Black queen moves: {black_queen_moves}')\n",
" print(f'White queen moves: {extract_square_names(white_queen_moves)}')\n",
" print(f'Black queen moves: {extract_square_names(black_queen_moves)}')\n",
"# list1 = ['Qd1', 'Qc2', 'Qc3', 'Qb3', 'Qb7+', 'Qxd7#']\n",
"# list2 = ['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6']\n",
"# print(white_queen_moves)\n",
"# print(list1)"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "e0e4858a",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"opening_name\n",
"Alekhine Defense: Exchange Variation 9.0\n",
"Anderssen Opening 1.0\n",
"Benko Gambit Accepted | Fully Accepted Variation 9.0\n",
"Benko Gambit Declined | Quiet Line 7.0\n",
"Benoni Defense: Benoni-Indian Defense 4.0\n",
" ... \n",
"Trompowsky Attack 3.0\n",
"Van Geet Opening: Dunst-Perrenet Gambit 5.0\n",
"Vienna Game #2 6.0\n",
"Vienna Game: Vienna Gambit | Main Line 6.0\n",
"Yusupov-Rubinstein System 5.0\n",
"Name: opening_ply, Length: 112, dtype: float64\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"/var/folders/lm/cbc3n48n4x94zd3vf6zbbly40000gn/T/ipykernel_2729/977498901.py:12: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n",
" filtered_data = data[data['white_rating'] > 2200][data['black_rating'] > 2200]\n"
]
}
],
"source": [
"\n",
"\n",
"# Filtrowanie danych dla elo > 2200\n",
"filtered_data = data[data['white_rating'] > 2200][data['black_rating'] > 2200]\n",
"\n",
"# Oblicz średnią opening_ply dla każdej unikalnej wartości w kolumnie 'opening'\n",
"average_opening_ply = filtered_data.groupby('opening_name')['opening_ply'].mean()\n",
"\n",
"# Wyświetl średnie opening_ply dla każdej opening, dla elo > 2200\n",
"print(average_opening_ply)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.6"
}
},
"nbformat": 4,
"nbformat_minor": 5
}