5.3 KiB
5.3 KiB
import pandas as pd
import re
pd.set_option('display.max_rows', 10000)
pd.set_option('display.max_columns', 10000)
file_path = 'games.csv'
data = pd.read_csv(file_path)
import re
def extract_square_names(moves_list):
square_names = []
for move in moves_list:
# Use a regular expression to match the chess square name
match = re.search(r'[a-h][1-8]', move)
if match:
square_names.append(match.group())
return square_names
['Qd1', 'Qc2', 'Qc3', 'Qb3', 'Qb7+', 'Qxd7#'] ['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6'] Square names from list1: ['d1', 'c2', 'c3', 'b3', 'b7', 'd7'] Square names from list2: ['d1', 'd4', 'd1', 'a4', 'h4', 'g5', 'g3', 'g6']
opening_number_of_games = data['opening_name'].value_counts()
opening_number_of_games.head(10)
# openings = ['Sicilian Defense', 'Old Benoni Defense', "Queen's Pawn Game: Mason Attack"]
old_benoni_games = data[data['opening_name'].str.contains('Old Benoni Defense', case = False)]
old_benoni_count = len(old_benoni_games)
for text in old_benoni_games.head(1)['moves']:
moves = text.split()
white_queen_moves = ['Qd1']
black_queen_moves = ['Qd8']
for idx, move in enumerate(moves):
if move.startswith("Q"):
if idx % 2 == 0:
white_queen_moves.append(move)
if idx % 2 == 1:
black_queen_moves.append(move)
# print(f'White queen moves: {white_queen_moves}')
# print(f'Black queen moves: {black_queen_moves}')
print(f'White queen moves: {extract_square_names(white_queen_moves)}')
print(f'Black queen moves: {extract_square_names(black_queen_moves)}')
# list1 = ['Qd1', 'Qc2', 'Qc3', 'Qb3', 'Qb7+', 'Qxd7#']
# list2 = ['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6']
# print(white_queen_moves)
# print(list1)
['Qd1', 'Qxd4', 'Qd1', 'Qa4', 'Qh4', 'Qxg5', 'Qg3', 'Qxg6'] White queen moves: ['d1', 'd4', 'd1', 'a4', 'h4', 'g5', 'g3', 'g6'] ['Qd8', 'Qe7', 'Qc7', 'Qg7', 'Qxg6'] Black queen moves: ['d8', 'e7', 'c7', 'g7', 'g6']
# Filtrowanie danych dla elo > 2200
filtered_data = data[data['white_rating'] > 2200][data['black_rating'] > 2200]
# Oblicz średnią opening_ply dla każdej unikalnej wartości w kolumnie 'opening'
average_opening_ply = filtered_data.groupby('opening_name')['opening_ply'].mean()
# Wyświetl średnie opening_ply dla każdej opening, dla elo > 2200
print(average_opening_ply)
opening_name Alekhine Defense: Exchange Variation 9.0 Anderssen Opening 1.0 Benko Gambit Accepted | Fully Accepted Variation 9.0 Benko Gambit Declined | Quiet Line 7.0 Benoni Defense: Benoni-Indian Defense 4.0 ... Trompowsky Attack 3.0 Van Geet Opening: Dunst-Perrenet Gambit 5.0 Vienna Game #2 6.0 Vienna Game: Vienna Gambit | Main Line 6.0 Yusupov-Rubinstein System 5.0 Name: opening_ply, Length: 112, dtype: float64
/var/folders/lm/cbc3n48n4x94zd3vf6zbbly40000gn/T/ipykernel_2729/977498901.py:12: UserWarning: Boolean Series key will be reindexed to match DataFrame index. filtered_data = data[data['white_rating'] > 2200][data['black_rating'] > 2200]