70 lines
2.3 KiB
Python
70 lines
2.3 KiB
Python
import numpy as np
|
|
import pandas as pd
|
|
from keras.models import Sequential
|
|
from keras.layers import Dense
|
|
from keras.optimizers import Adam
|
|
from keras import regularizers
|
|
from sacred import Experiment
|
|
from sacred.observers import MongoObserver, FileStorageObserver
|
|
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
|
|
|
|
from helper import prepare_tensors
|
|
|
|
ex = Experiment('495719')
|
|
|
|
ex.observers.append(MongoObserver(url='mongodb://admin:IUM_2021@tzietkiewicz.vm.wmi.amu.edu.pl:27017'))
|
|
ex.observers.append(FileStorageObserver('my_runs'))
|
|
|
|
@ex.config
|
|
def config():
|
|
epochs = 10
|
|
learning_rate = 0.001
|
|
batch_size = 32
|
|
|
|
@ex.main
|
|
def main(epochs, learning_rate, batch_size, _run):
|
|
with _run.open_resource("../hp_train.csv") as f:
|
|
hp_train = pd.read_csv(f)
|
|
with _run.open_resource("../hp_dev.csv") as f:
|
|
hp_dev = pd.read_csv(f)
|
|
|
|
X_train, Y_train = prepare_tensors(hp_train)
|
|
X_dev, Y_dev = prepare_tensors(hp_dev)
|
|
|
|
model = Sequential()
|
|
model.add(Dense(64, input_dim=7, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dense(32, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dense(16, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dense(8, activation='relu', kernel_regularizer=regularizers.l2(0.01)))
|
|
model.add(Dense(1, activation='linear'))
|
|
|
|
adam = Adam(learning_rate=learning_rate, beta_1=0.9, beta_2=0.999, epsilon=1e-7)
|
|
model.compile(optimizer=adam, loss='mean_squared_error')
|
|
|
|
model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size, validation_data=(X_dev, Y_dev))
|
|
|
|
model.save('hp_model.h5')
|
|
ex.add_artifact("hp_model.h5")
|
|
|
|
with _run.open_resource("../hp_test.csv") as f:
|
|
hp_test = pd.read_csv(f)
|
|
|
|
X_test, Y_test = prepare_tensors(hp_test)
|
|
|
|
test_predictions = model.predict(X_test)
|
|
|
|
predictions_df = pd.DataFrame(test_predictions, columns=["Predicted_Price"])
|
|
predictions_df.to_csv('hp_test_predictions.csv', index=False)
|
|
|
|
rmse = np.sqrt(mean_squared_error(Y_test, test_predictions))
|
|
mae = mean_absolute_error(Y_test, test_predictions)
|
|
r2 = r2_score(Y_test, test_predictions)
|
|
|
|
_run.log_scalar("rmse", rmse)
|
|
_run.log_scalar("mae", mae)
|
|
_run.log_scalar("r2", r2)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
ex.run()
|