Detection-of-plant-diseases/dataset/dataset.py

76 lines
2.6 KiB
Python
Raw Normal View History

2024-05-05 01:20:04 +02:00
import os
from pathlib import Path
import tensorflow as tf
2024-05-05 13:25:53 +02:00
from .consts import DISEASE_CLASSES, PLANT_CLASSES
2024-05-05 01:20:04 +02:00
class Dataset:
''' Class to load and preprocess the dataset.
Loads images and labels from the given directory to tf.data.Dataset.
2024-05-05 12:41:54 +02:00
2024-05-05 01:20:04 +02:00
Args:
`data_dir (Path)`: Path to the dataset directory.
`seed (int)`: Seed for shuffling the dataset.
`repeat (int)`: Number of times to repeat the dataset.
`shuffle_buffer_size (int)`: Size of the buffer for shuffling the dataset.
`batch_size (int)`: Batch size for the dataset.
'''
2024-05-05 12:41:54 +02:00
2024-05-05 01:20:04 +02:00
def __init__(self,
data_dir: Path,
seed: int = 42,
repeat: int = 1,
shuffle_buffer_size: int = 10_000,
batch_size: int = 64) -> None:
self.data_dir = data_dir
self.seed = seed
self.repeat = repeat
2024-05-05 12:41:54 +02:00
self.shuffle_buffer_size = shuffle_buffer_size
2024-05-05 01:20:04 +02:00
self.batch_size = batch_size
2024-05-05 19:03:15 +02:00
self.dataset = self.__load_dataset()\
2024-05-05 12:41:54 +02:00
.shuffle(self.shuffle_buffer_size, seed=self.seed)\
2024-05-05 01:20:04 +02:00
.repeat(self.repeat)\
2024-05-05 19:28:40 +02:00
.batch(self.batch_size, drop_remainder=True)\
2024-05-05 01:20:04 +02:00
.prefetch(tf.data.experimental.AUTOTUNE)
2024-05-05 19:03:15 +02:00
def __load_dataset(self) -> tf.data.Dataset:
2024-05-05 01:20:04 +02:00
# check if path has 'test' word in it
dataset = tf.data.Dataset.list_files(str(self.data_dir / '*/*'))
if 'test' in str(self.data_dir).lower():
# file names issue - labels have camel case (regex?) and differs from the train/valid sets
pass
else:
dataset = dataset.map(
2024-05-05 19:03:15 +02:00
self.__preprocess, num_parallel_calls=tf.data.experimental.AUTOTUNE)
2024-05-05 01:20:04 +02:00
return dataset
2024-05-05 19:03:15 +02:00
def __get_labels(self, image_path):
2024-05-05 12:41:54 +02:00
path = tf.strings.split(image_path, os.path.sep)[-2]
plant = tf.strings.split(path, '___')[0]
disease = tf.strings.split(path, '___')[1]
2024-05-05 13:25:53 +02:00
one_hot_plant = plant == PLANT_CLASSES
one_hot_disease = disease == DISEASE_CLASSES
return tf.cast(one_hot_plant, dtype=tf.uint8, name=None), tf.cast(one_hot_disease, dtype=tf.uint8, name=None)
2024-05-05 01:20:04 +02:00
2024-05-05 19:03:15 +02:00
def __get_image(self, image_path):
2024-05-05 12:41:54 +02:00
img = tf.io.read_file(image_path)
2024-05-05 13:25:53 +02:00
img = tf.io.decode_jpeg(img, channels=3)
return tf.cast(img, dtype=tf.float32, name=None) / 255.
2024-05-05 01:20:04 +02:00
2024-05-05 19:03:15 +02:00
def __preprocess(self, image_path):
labels = self.__get_labels(image_path)
image = self.__get_image(image_path)
2024-05-05 01:20:04 +02:00
2024-05-05 12:41:54 +02:00
# returns X, Y1, Y2
2024-05-05 13:25:53 +02:00
return image, labels[0], labels[1]
def __getattr__(self, attr):
return getattr(self.dataset, attr)