2016-12-19 15:44:52 +01:00
|
|
|
using JuMP
|
2017-01-09 00:59:40 +01:00
|
|
|
import Base: rationalize
|
2017-01-14 15:24:16 +01:00
|
|
|
using GroupAlgebras
|
2016-12-19 15:44:52 +01:00
|
|
|
|
2017-02-11 13:31:01 +01:00
|
|
|
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
|
|
|
|
result = Vector{T}()
|
|
|
|
for u in U
|
|
|
|
for v in V
|
|
|
|
push!(result, u*v)
|
2016-12-21 10:00:22 +01:00
|
|
|
end
|
|
|
|
end
|
2017-01-18 17:51:58 +01:00
|
|
|
return unique(result)
|
2016-12-21 10:00:22 +01:00
|
|
|
end
|
2016-12-19 15:44:52 +01:00
|
|
|
|
2017-02-11 13:33:35 +01:00
|
|
|
function create_product_matrix(basis, limit)
|
2017-01-13 18:04:20 +01:00
|
|
|
product_matrix = zeros(Int, (limit,limit))
|
2016-12-21 10:00:22 +01:00
|
|
|
for i in 1:limit
|
2017-02-11 13:33:35 +01:00
|
|
|
x_inv::eltype(basis) = inv(basis[i])
|
2016-12-21 10:00:22 +01:00
|
|
|
for j in 1:limit
|
2017-01-13 18:02:34 +01:00
|
|
|
w = x_inv*basis[j]
|
|
|
|
index = findfirst(basis, w)
|
2017-02-11 13:33:35 +01:00
|
|
|
index ≠ 0 || throw(ArgumentError("Product is not supported on basis: $w"))
|
|
|
|
product_matrix[i,j] = index
|
2016-12-19 15:44:52 +01:00
|
|
|
end
|
|
|
|
end
|
2017-02-11 13:33:35 +01:00
|
|
|
return product_matrix
|
2016-12-19 15:44:52 +01:00
|
|
|
end
|
|
|
|
|
2017-02-11 13:30:17 +01:00
|
|
|
function constraints_from_pm(pm, total_length=maximum(pm))
|
|
|
|
n = size(pm,1)
|
|
|
|
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
|
|
|
|
for j in 1:n
|
|
|
|
Threads.@threads for i in 1:n
|
|
|
|
idx = pm[i,j]
|
|
|
|
push!(constraints[idx], [i,j])
|
|
|
|
end
|
|
|
|
end
|
|
|
|
return constraints
|
|
|
|
end
|
2016-12-21 16:02:03 +01:00
|
|
|
|
2017-02-11 13:34:28 +01:00
|
|
|
function splaplacian_coeff(S, basis, n=length(basis))
|
|
|
|
result = spzeros(n)
|
2016-12-21 16:02:03 +01:00
|
|
|
result[1] = length(S)
|
|
|
|
for s in S
|
2017-02-11 13:34:28 +01:00
|
|
|
ind = findfirst(basis, s)
|
2016-12-21 16:02:03 +01:00
|
|
|
result[ind] += -1
|
|
|
|
end
|
|
|
|
return result
|
|
|
|
end
|
|
|
|
|
2017-02-11 13:34:28 +01:00
|
|
|
function laplacian_coeff(S, basis)
|
|
|
|
return full(splaplacian_coeff(S,basis))
|
2016-12-21 16:02:03 +01:00
|
|
|
end
|
|
|
|
|
2017-01-09 01:01:31 +01:00
|
|
|
|
|
|
|
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement)
|
2016-12-21 16:03:19 +01:00
|
|
|
N = size(Δ.product_matrix,1)
|
2017-01-09 01:01:31 +01:00
|
|
|
const Δ² = Δ*Δ
|
2016-12-19 15:44:52 +01:00
|
|
|
@assert length(Δ) == length(matrix_constraints)
|
2017-02-11 13:38:02 +01:00
|
|
|
m = JuMP.Model();
|
|
|
|
JuMP.@variable(m, A[1:N, 1:N], SDP)
|
|
|
|
JuMP.@SDconstraint(m, A >= zeros(size(A)))
|
|
|
|
JuMP.@variable(m, κ >= 0.0)
|
|
|
|
JuMP.@objective(m, Max, κ)
|
2016-12-19 15:44:52 +01:00
|
|
|
|
2016-12-23 00:51:06 +01:00
|
|
|
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
|
2017-02-11 13:38:02 +01:00
|
|
|
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
|
2016-12-19 15:44:52 +01:00
|
|
|
end
|
|
|
|
return m
|
|
|
|
end
|
|
|
|
|
2017-01-09 01:01:31 +01:00
|
|
|
function solve_for_property_T{T}(S₁::Vector{Array{T,2}}, solver; verbose=true)
|
|
|
|
|
|
|
|
Δ, matrix_constraints = prepare_Laplacian_and_constraints(S₁)
|
|
|
|
|
|
|
|
problem = create_SDP_problem(matrix_constraints, Δ);
|
|
|
|
@show solver
|
|
|
|
|
|
|
|
setsolver(problem, solver);
|
|
|
|
verbose && @show problem
|
|
|
|
|
|
|
|
solution_status = solve(problem);
|
|
|
|
verbose && @show solution_status
|
|
|
|
|
|
|
|
if solution_status != :Optimal
|
|
|
|
throw(ExceptionError("The solver did not solve the problem successfully!"))
|
|
|
|
else
|
|
|
|
κ = SL_3ZZ.objVal;
|
|
|
|
A = getvalue(getvariable(SL_3ZZ, :A));;
|
|
|
|
end
|
|
|
|
|
|
|
|
return κ, A
|
|
|
|
end
|
|
|
|
|
|
|
|
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
|
|
|
|
return Δ*Δ - κ*Δ
|
|
|
|
end
|
|
|
|
|
2017-01-14 15:24:16 +01:00
|
|
|
@everywhere function square(vector, elt)
|
2016-12-23 00:51:06 +01:00
|
|
|
zzz = zeros(elt.coefficients)
|
2017-01-14 15:24:16 +01:00
|
|
|
zzz[1:length(vector)] = vector
|
|
|
|
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
|
|
|
|
# return (new_base_elt*new_base_elt).coefficients
|
|
|
|
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
|
|
|
|
end
|
|
|
|
|
|
|
|
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
|
|
|
|
elt::GroupAlgebraElement{T})
|
2016-12-22 02:39:18 +01:00
|
|
|
L = size(sqrt_matrix,2)
|
2017-01-14 15:24:16 +01:00
|
|
|
result = @parallel (+) for i in 1:L
|
|
|
|
square(sqrt_matrix[:,i], elt)
|
2016-12-19 15:44:52 +01:00
|
|
|
end
|
2016-12-22 22:12:52 +01:00
|
|
|
return GroupAlgebraElement{T}(result, elt.product_matrix)
|
2016-12-19 15:44:52 +01:00
|
|
|
end
|
|
|
|
|
|
|
|
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
|
|
|
|
sqrt_corrected = similar(sqrt_matrix)
|
|
|
|
l = size(sqrt_matrix,2)
|
|
|
|
for i in 1:l
|
|
|
|
col = view(sqrt_matrix,:,i)
|
|
|
|
sqrt_corrected[:,i] = col - sum(col)//l
|
2017-01-09 01:01:31 +01:00
|
|
|
# @assert sum(sqrt_corrected[:,i]) == 0
|
2016-12-19 15:44:52 +01:00
|
|
|
end
|
|
|
|
return sqrt_corrected
|
|
|
|
end
|
2017-01-09 01:01:31 +01:00
|
|
|
|
|
|
|
function check_solution{T<:Number}(κ::T,
|
|
|
|
sqrt_matrix::Array{T,2},
|
|
|
|
Δ::GroupAlgebraElement{T})
|
|
|
|
eoi = EOI(Δ, κ)
|
2017-01-14 15:24:16 +01:00
|
|
|
result = compute_SOS(sqrt_matrix, Δ)
|
2017-01-13 18:07:41 +01:00
|
|
|
L₁_dist = norm(result - eoi,1)
|
|
|
|
return eoi - result, L₁_dist
|
2017-01-09 01:01:31 +01:00
|
|
|
end
|
|
|
|
|
2017-01-09 00:59:40 +01:00
|
|
|
function rationalize{T<:Integer, S<:Real}(::Type{T},
|
|
|
|
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
|
|
|
|
r(x) = rationalize(T, x, tol=tol)
|
|
|
|
return r.(X)
|
2017-01-13 18:07:41 +01:00
|
|
|
end;
|