Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ` aż `5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)