Compare commits

..

7 Commits

63 changed files with 3383 additions and 1113 deletions

1
.gitignore vendored
View File

@ -1 +0,0 @@
Wyniki*

75
152974.md Normal file
View File

@ -0,0 +1,75 @@
ID_testu: 152974
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[143, 127, 108, 78, 69, 118, 97, 123, 91, 65, 116, 50, 101, 117, 98, 122, 79, 109, 35, 75, 49, 30, 113, 117, 109, 85, 102, 155]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 4 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
`[18.5, 15.9, 12.7, 7.8, 6.2, 14.4, 10.9, 15.2, 9.9, 5.5, 14.1]`
`[3.1, 11.5, 14.2, 11.0, 15.0, 7.8, 12.9, 2.0, 7.2, 2.8, 2.0]`
`[13.6, 14.2, 12.9, 8.9, 11.7, 20.6, 17.1, 2.1, 21.0, 11.7, 19.9]`
`[14.9, 8.0, 6.8, 12.7, 3.6, 2.0, 19.1, 16.4, 14.3, 8.6, 2.0]`
1. Czy pojedynczy student który zebrał `5.8` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[15.3, 6.1, 11.5, 15.9, 10.9, 21.3, 13.2, 14.9, 13.2, 8.2, 14.5]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 16 meczy każdej z drużn skończyły się następującymi wynikami:
* ABC vs ???:
`2:3, 4:0, 1:1, 2:1, 1:1, 2:0, 1:0, 2:1, 1:2, 1:2, 1:4, 0:2, 2:1, 2:1, 2:0, 2:1`
* XYZ vs ???:
`5:3, 1:2, 1:2, 3:0, 2:3, 0:4, 3:2, 2:4, 3:2, 1:2, 1:1, 3:5, 3:5, 1:4, 4:6, 5:3`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+7.3 %` wagi,
* `+16.3 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
wagi = `[298, 265, 255, 309, 286, 314, 279, 250, 307, 234, 290, 308, 286, 313, 265, 299, 217, 262]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `16` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,56 +0,0 @@
ID_testu: 404787
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z chemii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[88, 50, 64, 83, 101, 89, 88, 119, 31, 99, 57, 82, 61, 123, 94, 96, 81, 112, 59, 113, 84, 87, 90, 71]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `54` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `544` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `263` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `16` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,58 +0,0 @@
ID_testu: 405374
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z matematyki z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[62, 81, 122, 110, 92, 84, 130, 117, 63, 136, 96, 165, 116, 74, 108, 74, 104, 91, 78, 77, 96, 73, 119, 67, 79, 70]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `51` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `25` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `470` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `275` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `27` zawodowych sportowców;
* `24` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
425307.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 425307
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [69.2, 73.1, 40.7, 52.1, 28.1, 78.0, 22.2, 56.9, 12.8, 50.2, 21.4, 60.5, 35.2, 30.8]`
`Prowadzący: [75.4, 37.5, 72.9, 47.4, 50.8, 60.9, 100.0, 46.9, 18.2, 57.1, 19.9, 60.0, 93.1, 68.4]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 5, 3, 4, 5, 3, 3, 5, 5, 5, 5, 3, 5, 3, 4, 3]`
* dla `XYZ`: `[4, 3, 5, 4, 4, 5, 3, 3, 4, 3, 4, 7, 4, 5, 3, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `35%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `35%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

90
433241.md Normal file
View File

@ -0,0 +1,90 @@
ID_testu: 433241
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 0, 0, 1, 1, 1, 0, 0, 1, 0]
Student 02 : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Student 03 : [1, 0, 0, 0, 0, 1, 0, 0, 1, 1]
Student 04 : [1, 0, 0, 1, 1, 0, 0, 0, 1, 1]
Student 05 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Student 06 : [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Student 07 : [0, 1, 0, 0, 1, 0, 0, 0, 1, 1]
Student 08 : [0, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Student 09 : [1, 0, 1, 0, 0, 1, 0, 0, 1, 0]
Student 10 : [0, 0, 0, 1, 0, 0, 1, 1, 0, 0]
Student 11 : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 0, 0, 1, 1, 1, 0, 0, 1, 0]
Prowadzący 02 : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 03 : [1, 0, 0, 0, 0, 1, 0, 0, 1, 1]
Prowadzący 04 : [1, 0, 0, 1, 1, 0, 0, 0, 1, 1]
Prowadzący 05 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 06 : [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 07 : [0, 1, 0, 0, 1, 0, 0, 0, 1, 1]
Prowadzący 08 : [0, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Prowadzący 09 : [1, 0, 1, 0, 0, 1, 0, 0, 1, 0]
Prowadzący 10 : [0, 0, 0, 1, 0, 0, 1, 1, 0, 0]
Prowadzący 11 : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `64%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `64%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [63.3, 41.5, 45.5, 59.5, 50.5, 41.7, 37.2, 72.6, 63.1, 51.5, 57.7, 38.1, 43.5, 49.9]`
* `B = [57.5, 68.2, 59.7, 61.5, 65.7, 56.8, 59.0, 61.0, 61.5]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

View File

@ -1,56 +0,0 @@
ID_testu: 433304
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z geografii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[41, 100, 48, 78, 63, 116, 142, 117, 81, 90, 106, 100, 59, 129, 68, 144, 132, 75, 191, 97, 60, 112, 93]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `55` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `30` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `444` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `306` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
433305.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433305
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [21.7, 51.9, 75.7, 71.8, 45.9, 30.1, 50.0, 35.6, 49.7, 31.6]`
`Prowadzący: [87.0, 50.7, 30.4, 22.1, 18.0, 69.8, 62.2, 46.2, 52.0, 1.9]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 4, 5, 3, 4, 4, 3, 4, 3, 7, 3, 3, 4, 6, 3, 4, 4, 4, 5]`
* dla `XYZ`: `[4, 4, 5, 6, 4, 6, 5, 5, 5, 4, 3, 5, 5, 4, 5, 5, 4, 4, 5, 5]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `48%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `48%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433355.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433355
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [54.8, 56.5, 58.4, 10.1, 35.9, 24.5, 35.1, 72.7, 73.3, 34.0, 80.1, 45.0, 24.5, 79.8, 27.7, 20.7, 37.1, 32.3, 22.7]`
`Prowadzący: [52.3, 55.8, 13.6, 18.3, 29.9, 32.0, 34.8, 31.4, 49.1, 55.0, 39.3, 66.3, 40.4, 72.5, 42.8, 32.3, 73.1, 51.3, 62.4]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `19` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 5, 5, 3, 5, 6, 5, 4]`
* dla `XYZ`: `[4, 4, 3, 3, 5, 4, 4, 3, 4, 4, 4, 4, 4, 7, 3, 5, 4, 4, 3]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `55%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `55%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433371.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433371
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [34.7, 53.2, 15.6, 45.0, 25.3, 23.0, 67.1, 85.7, 46.1, 28.4, 22.3, 47.0, 63.7, 37.0, 78.0, 79.5, 30.8, 58.3]`
`Prowadzący: [53.4, 45.2, 43.8, 53.6, 29.6, 93.6, 61.2, 54.8, 53.7, 70.0, 0.0, 40.6, 62.2, 54.7, 39.9, 35.9, 55.6, 20.5]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 4, 6, 5, 3, 4, 3, 6, 4, 4, 5, 3, 4, 4, 3, 3]`
* dla `XYZ`: `[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `49%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `49%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433374.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433374
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [38.7, 37.9, 17.1, 62.0, 31.0, 20.0, 23.0, 39.3, 53.1, 79.6]`
`Prowadzący: [33.4, 82.2, 66.2, 67.5, 74.6, 75.9, 53.1, 53.2, 45.5, 71.0]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 5, 3, 4, 3, 5, 3, 5, 4, 4, 4, 3, 5, 4, 4, 4, 3, 5]`
* dla `XYZ`: `[4, 4, 5, 3, 4, 4, 3, 5, 3, 4, 4, 7, 6, 5, 6, 4, 5, 3]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `44%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `44%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

92
433375.md Normal file
View File

@ -0,0 +1,92 @@
ID_testu: 433375
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[131, 103, 87, 128, 79, 48, 130, 108, 79, 87, 99, 40, 105, 42, 79, 114, 82, 145, 61, 59, 84, 78, 78, 126, 93]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
`[3.47, 3.09, 2.88, 3.43, 2.77, 2.37, 3.45, 3.16, 2.77, 2.89, 3.04, 2.25, 3.12]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[2.26, 3.11, 3.93, 3.17, 4.64, 2.7, 2.64, 3.23, 3.09, 3.08, 4.2]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.26, 3.05, 4.01, 3.31, 3.16, 2.68, 3.33, 3.51, 4.25, 3.43, 2.83]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
`[41.28, 46.57, 45.29, 44.33, 47.04, 41.29, 44.82, 45.16, 47.92, 49.45, 45.14, 46.42, 49.12, 46.87, 43.0, 44.68, 47.45, 38.03, 48.5, 46.12, 46.3, 40.56, 44.95, 40.56, 46.16, 42.57, 47.16, 46.25, 46.1, 44.2]`
Po podaniu leku XYZ wyniki były następujące:
`[38.9, 48.2, 45.75, 47.76, 50.42, 37.25, 40.71, 48.02, 49.59, 59.98, 51.08, 47.96, 54.64, 48.17, 34.53, 38.5, 49.74, 30.21, 54.06, 50.16, 49.69, 35.76, 38.33, 32.58, 48.61, 37.04, 51.55, 48.62, 48.93, 46.05]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 10 kobiet i 20 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[44.95, 42.57, 41.28, 44.68, 40.56, 38.03, 44.82, 43.0, 40.56, 41.29]`
- po: `[38.33, 37.04, 38.9, 38.5, 32.58, 30.21, 40.71, 34.53, 35.76, 37.25]`
* Mężczyźni:
- przed: `[47.16, 44.2, 47.45, 44.33, 46.16, 47.92, 46.3, 49.45, 45.29, 45.16, 46.42, 46.12, 46.1, 48.5, 46.87, 46.25, 49.12, 47.04, 46.57, 45.14]`
- po: `[51.55, 46.05, 49.74, 47.76, 48.61, 49.59, 49.69, 59.98, 45.75, 48.02, 47.96, 50.16, 48.93, 54.06, 48.17, 48.62, 54.64, 50.42, 48.2, 51.08]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+7.5 %` wagi,
* `+17.3 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
wagi = `[272, 311, 263, 234, 313, 292, 263, 272, 283, 226, 289, 228, 264, 298, 266, 327, 247, 244, 269, 263, 263]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `28` zawodowych sportowców;
* `25` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

88
433380.md Normal file
View File

@ -0,0 +1,88 @@
ID_testu: 433380
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[9, 6, 8, 4, 4, 7, 3, 8, 6, 3, 7, 6, 10, 3, 3, 3, 4, 6, 4, 6, 3]`
Grupa testowa: `[2, 9, 2, 4, 4, 3, 6, 4, 3, 3, 2, 6, 6, 4, 4, 4, 5, 2, 6, 4]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 4 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
`[8.7, 16.6, 2.0, 8.6, 10.3, 7.7, 14.3, 4.3, 2.0, 3.1]`
`[2.0, 13.7, 8.8, 9.3, 10.1, 8.6, 11.0, 6.3, 11.0, 13.5]`
`[19.9, 3.1, 17.5, 9.3, 14.5, 11.0, 10.7, 14.6, 3.9, 19.4]`
`[11.7, 4.6, 15.1, 16.1, 21.6, 5.6, 7.3, 6.0, 12.3, 14.9]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[10.1, 9.0, 7.8, 16.0, 11.7, 9.2, 12.3, 11.3, 14.2, 13.7]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
`[48.04, 41.28, 42.16, 47.5, 46.79, 45.3, 49.96, 47.03, 39.16, 49.26, 48.35, 44.93, 37.88, 48.38, 36.63, 38.55, 46.58, 46.78, 37.9, 44.14, 47.3, 45.17, 47.3, 41.37, 47.31, 40.87, 45.89, 47.2, 48.11, 49.82, 46.63]`
Po podaniu leku XYZ wyniki były następujące:
`[52.0, 39.73, 34.09, 49.04, 50.24, 40.55, 52.63, 49.91, 34.2, 54.08, 50.8, 48.5, 34.16, 48.56, 29.95, 32.1, 48.18, 51.83, 34.66, 35.92, 51.44, 47.34, 52.02, 33.0, 50.52, 33.64, 48.5, 52.01, 49.71, 49.92, 47.54]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 11 kobiet i 20 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[41.37, 45.3, 37.9, 41.28, 42.16, 40.87, 44.14, 39.16, 37.88, 38.55, 36.63]`
- po: `[33.0, 40.55, 34.66, 39.73, 34.09, 33.64, 35.92, 34.2, 34.16, 32.1, 29.95]`
* Mężczyźni:
- przed: `[48.11, 46.63, 46.78, 47.03, 46.58, 47.31, 45.89, 47.3, 48.04, 49.96, 44.93, 49.26, 46.79, 48.35, 47.3, 47.2, 48.38, 45.17, 49.82, 47.5]`
- po: `[49.71, 47.54, 51.83, 49.91, 48.18, 50.52, 48.5, 51.44, 52.0, 52.63, 48.5, 54.08, 50.24, 50.8, 52.02, 52.01, 48.56, 47.34, 49.92, 49.04]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `45` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `30` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `562` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `292` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

92
433381.md Normal file
View File

@ -0,0 +1,92 @@
ID_testu: 433381
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[5, 3, 7, 5, 0, 2, 5, 5, 2, 3, 6, 7, 1, 2, 6, 8, 1, 3, 8, 8, 4, 6]`
Grupa testowa: `[3, 6, 7, 3, 7, 8, 4, 4, 11, 1, 5, 7, 7, 4, 0, 5, 3, 5, 8]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 5 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
`[7.4, 13.1, 12.0, 8.8, 13.1, 19.6, 9.5, 10.3, 25.1, 5.6, 13.2, 17.9, 17.8, 6.3, 3.2, 9.2]`
`[8.7, 9.5, 18.1, 10.5, 14.0, 9.7, 7.3, 15.6, 10.1, 2.0, 3.4, 9.6, 10.8, 2.6, 4.0, 15.0]`
`[14.4, 2.0, 2.9, 15.9, 15.4, 4.9, 6.4, 14.6, 14.5, 8.2, 11.7, 23.4, 8.8, 9.9, 9.9, 15.8]`
`[3.4, 10.9, 20.9, 10.0, 5.9, 2.0, 10.3, 8.2, 10.0, 13.7, 16.2, 12.8, 6.6, 8.3, 18.2, 11.5]`
`[12.4, 23.2, 10.0, 8.6, 11.7, 3.5, 5.9, 3.7, 12.8, 9.8, 10.2, 14.1, 10.1, 13.2, 8.3, 16.9]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[13.7, 8.2, 12.3, 13.1, 8.3, 10.8, 13.9, 13.7, 14.2, 13.7, 9.5, 14.4, 14.7, 14.0, 8.5, 15.1]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
`[46.77, 48.2, 44.96, 49.35, 41.75, 43.57, 41.42, 43.02, 48.67, 45.67, 46.86, 46.9, 45.88, 47.23, 45.01, 49.38, 42.15, 49.43, 46.87, 46.82, 43.56, 40.71, 46.61, 49.53, 47.15, 44.37, 47.04, 46.18, 47.97]`
Po podaniu leku XYZ wyniki były następujące:
`[49.57, 51.95, 53.48, 52.09, 37.83, 32.21, 36.97, 38.58, 50.45, 47.41, 50.11, 54.55, 49.76, 52.01, 47.44, 54.64, 38.01, 55.21, 50.15, 36.97, 34.63, 31.65, 49.83, 40.08, 47.8, 47.6, 47.13, 49.4, 53.18]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 9 kobiet i 20 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[40.71, 43.56, 43.02, 41.42, 43.57, 46.82, 41.75, 42.15, 49.53]`
- po: `[31.65, 34.63, 38.58, 36.97, 32.21, 36.97, 37.83, 38.01, 40.08]`
* Mężczyźni:
- przed: `[45.67, 47.97, 49.38, 49.35, 45.88, 44.96, 46.77, 46.61, 46.86, 49.43, 47.15, 48.2, 46.9, 46.18, 48.67, 47.04, 44.37, 45.01, 46.87, 47.23]`
- po: `[47.41, 53.18, 54.64, 52.09, 49.76, 53.48, 49.57, 49.83, 50.11, 55.21, 47.8, 51.95, 54.55, 49.4, 50.45, 47.13, 47.6, 47.44, 50.15, 52.01]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `59` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `24` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `466` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `276` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `27` zawodowych sportowców;
* `25` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
433383.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433383
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [51.3, 66.0, 40.2, 36.8, 45.1, 51.2, 70.5, 77.6, 59.0, 73.1, 17.7, 34.1, 51.0, 12.0, 79.3, 32.8, 29.0, 45.9, 52.7, 79.6]`
`Prowadzący: [68.2, 43.2, 47.4, 19.8, 29.8, 55.0, 46.5, 47.9, 47.1, 100.0, 55.4, 75.8, 79.9, 44.2, 42.5, 38.4, 6.9, 9.0, 49.4, 85.5]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 5, 4, 4, 3]`
* dla `XYZ`: `[4, 4, 4, 3, 6, 4, 3, 3, 3, 3, 3, 3, 4, 4, 5, 3, 3, 5, 3, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `17%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `17%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

73
433384.md Normal file
View File

@ -0,0 +1,73 @@
ID_testu: 433384
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[148, 96, 123, 97, 133, 139, 56, 179, 61, 96, 58, 71, 84, 84, 64, 105, 75, 110, 39, 74, 142, 144, 120, 136, 72, 75]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 3 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
`[17.0, 8.5, 12.8, 8.6, 14.6, 15.7, 2.0, 22.2, 2.6, 8.4, 2.2, 4.3, 6.4]`
`[6.4, 3.1, 9.9, 4.9, 10.7, 2.0, 4.8, 16.0, 16.5, 12.4, 15.0, 4.5, 4.9]`
`[15.1, 9.9, 9.3, 6.9, 15.7, 8.9, 18.9, 13.3, 7.1, 8.9, 12.7, 21.4, 3.4]`
1. Czy pojedynczy student który zebrał `2.8` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[13.0, 13.4, 10.5, 7.3, 5.2, 12.8, 15.5, 22.0, 11.9, 17.4, 13.1, 18.0, 24.1]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 18 meczy każdej z drużn skończyły się następującymi wynikami:
* ABC vs ???:
`1:4, 3:0, 1:1, 2:3, 0:1, 1:1, 2:0, 2:1, 2:0, 3:1, 0:3, 1:3, 6:0, 1:0, 2:2, 3:2, 0:2, 3:2`
* XYZ vs ???:
`2:2, 2:3, 4:1, 3:4, 4:3, 2:0, 3:7, 5:3, 3:2, 4:5, 3:4, 0:3, 3:5, 2:2, 1:2, 2:2, 1:4, 5:1`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+5.3 %` wagi,
* `+19.4 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
wagi = `[299, 270, 311, 319, 224, 363, 230, 269, 227, 241, 256, 255, 233, 279, 245, 285, 205, 245, 321, 324, 297, 314, 242, 245, 315]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `18` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

88
433386.md Normal file
View File

@ -0,0 +1,88 @@
ID_testu: 433386
**Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[118, 129, 129, 103, 68, 102, 169, 128, 56, 97, 92, 93, 99, 143, 125, 136, 101, 123, 97, 71, 125, 131, 123, 143, 85]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 5 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
`[11.8, 13.5, 13.6, 9.3, 3.4, 9.0, 20.3, 13.4, 2.0]`
`[8.3, 7.4, 7.5, 8.6, 15.9, 12.9, 14.8, 8.8, 12.5]`
`[8.3, 4.0, 12.8, 13.9, 12.5, 16.0, 6.3, 23.5, 9.1]`
`[3.2, 14.2, 2.0, 10.3, 10.6, 11.9, 9.1, 2.0, 2.7]`
`[2.9, 4.3, 13.0, 16.9, 5.6, 7.4, 2.0, 18.7, 13.2]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[15.0, 15.5, 10.5, 16.1, 11.5, 14.4, 17.7, 5.1, 16.7]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
`[47.75, 40.75, 51.05, 47.13, 46.65, 40.68, 46.59, 42.9, 41.66, 43.82, 37.72, 48.18, 47.75, 46.74, 44.95, 46.5, 48.79, 48.78, 47.85, 48.44, 45.88, 41.51, 43.72, 43.75, 41.13, 38.69, 47.88, 45.19]`
Po podaniu leku XYZ wyniki były następujące:
`[49.8, 37.4, 50.95, 36.49, 51.18, 35.79, 48.1, 38.14, 35.64, 37.35, 29.21, 53.34, 50.59, 52.13, 46.12, 50.99, 53.13, 51.15, 50.2, 55.32, 51.67, 34.93, 34.23, 32.83, 32.68, 33.65, 48.02, 49.88]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 12 kobiet i 16 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[42.9, 43.75, 43.82, 41.66, 38.69, 41.51, 47.13, 43.72, 37.72, 41.13, 40.68, 40.75]`
- po: `[38.14, 32.83, 37.35, 35.64, 33.65, 34.93, 36.49, 34.23, 29.21, 32.68, 35.79, 37.4]`
* Mężczyźni:
- przed: `[46.59, 48.78, 47.88, 48.44, 46.65, 47.75, 46.5, 45.19, 47.85, 48.18, 47.75, 48.79, 45.88, 51.05, 46.74, 44.95]`
- po: `[48.1, 51.15, 48.02, 55.32, 51.18, 49.8, 50.99, 49.88, 50.2, 53.34, 50.59, 53.13, 51.67, 50.95, 52.13, 46.12]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `52` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `549` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `310` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `21` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

90
433388.md Normal file
View File

@ -0,0 +1,90 @@
ID_testu: 433388
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Student 02 : [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Student 03 : [1, 1, 0, 1, 0, 0, 0, 0, 1, 1]
Student 04 : [0, 1, 1, 0, 0, 0, 0, 0, 1, 0]
Student 05 : [0, 0, 1, 0, 0, 1, 1, 1, 0, 0]
Student 06 : [0, 0, 1, 0, 1, 0, 0, 1, 1, 0]
Student 07 : [1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
Student 08 : [0, 1, 1, 0, 0, 1, 1, 1, 0, 1]
Student 09 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 10 : [0, 1, 1, 1, 0, 0, 0, 0, 0, 1]
Student 11 : [0, 1, 0, 1, 0, 0, 1, 0, 0, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 02 : [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 03 : [1, 1, 0, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 04 : [0, 1, 1, 0, 0, 0, 0, 0, 1, 0]
Prowadzący 05 : [0, 0, 1, 0, 0, 1, 1, 1, 0, 0]
Prowadzący 06 : [0, 0, 1, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 07 : [1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
Prowadzący 08 : [0, 1, 1, 0, 0, 1, 1, 1, 0, 1]
Prowadzący 09 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 10 : [0, 1, 1, 1, 0, 0, 0, 0, 0, 1]
Prowadzący 11 : [0, 1, 0, 1, 0, 0, 1, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `42%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `42%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [42.1, 42.9, 33.8, 24.5, 35.8, 48.3, 57.6, 55.6, 52.8, 56.6, 58.3, 49.8, 32.1, 41.1]`
* `B = [58.2, 59.6, 56.5, 60.2, 56.4, 50.4, 70.9, 50.8, 73.3]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

67
433389.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433389
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [54.6, 37.1, 32.3, 83.5, 63.7, 59.0, 38.6, 50.8, 51.6, 41.4, 56.7, 61.7]`
`Prowadzący: [57.9, 58.0, 87.2, 35.2, 72.6, 10.8, 19.9, 56.0, 48.0, 40.4, 68.1, 63.6]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 4, 5, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 3]`
* dla `XYZ`: `[4, 5, 4, 5, 4, 4, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `44%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `44%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433390.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433390
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [52.1, 44.8, 19.8, 27.8, 56.9, 48.1, 35.4, 44.2, 23.1, 16.6, 49.7, 0.0, 46.7, 64.3, 50.8, 49.1, 30.8, 61.0]`
`Prowadzący: [32.0, 60.8, 47.2, 44.6, 51.9, 43.1, 57.8, 47.9, 22.4, 38.5, 54.8, 39.7, 32.2, 73.4, 57.0, 51.0, 49.8, 22.0]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 3, 5, 3, 3, 5, 5, 3, 3, 4, 4, 4, 5, 3, 4, 3, 3, 3, 3, 4]`
* dla `XYZ`: `[3, 4, 6, 7, 3, 7, 4, 5, 3, 3, 4, 5, 3, 4, 3, 6, 3, 3, 3, 5]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `37%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `37%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433391.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433391
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [46.3, 57.0, 60.4, 74.9, 34.7, 64.4, 82.9, 71.6, 40.6, 66.4, 64.7, 73.4, 98.9, 55.5, 0.0, 2.3, 63.5, 32.9, 37.1, 49.5]`
`Prowadzący: [41.0, 10.1, 26.1, 59.1, 81.2, 51.7, 61.0, 67.2, 48.7, 73.7, 26.3, 67.2, 47.1, 73.2, 86.0, 64.9, 61.8, 64.6, 56.0, 74.3]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[6, 5, 5, 5, 4, 4, 4, 5, 7, 8, 5, 4, 5, 6, 7, 7, 3, 7, 7, 6]`
* dla `XYZ`: `[4, 5, 3, 5, 3, 3, 4, 6, 4, 4, 4, 4, 4, 5, 5, 4, 6, 6, 5, 3]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `41%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `41%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433392.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433392
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [60.5, 48.8, 75.5, 56.5, 38.7, 49.1, 96.7, 91.6, 78.5, 68.2, 56.3, 54.2, 68.6, 44.6, 80.4]`
`Prowadzący: [34.6, 70.5, 56.8, 23.0, 56.0, 54.5, 33.3, 81.8, 39.2, 36.6, 30.5, 62.3, 53.9, 35.4, 48.7]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 5, 3, 4, 3, 4, 3, 3, 3, 7, 7, 4, 5, 3, 4, 4, 3, 5]`
* dla `XYZ`: `[6, 3, 5, 6, 7, 6, 5, 5, 5, 5, 5, 3, 5, 3, 5, 5, 6, 6]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `47%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `47%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

98
433393.md Normal file
View File

@ -0,0 +1,98 @@
ID_testu: 433393
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
Student 02 : [1, 0, 1, 1, 0, 0, 0, 1, 0, 1]
Student 03 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
Student 04 : [1, 1, 0, 1, 1, 0, 1, 0, 1, 1]
Student 05 : [1, 0, 0, 0, 1, 0, 1, 1, 1, 0]
Student 06 : [0, 0, 0, 0, 1, 1, 0, 0, 1, 1]
Student 07 : [0, 0, 0, 0, 1, 1, 1, 0, 1, 1]
Student 08 : [0, 0, 0, 1, 0, 1, 0, 1, 1, 1]
Student 09 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Student 10 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 11 : [1, 0, 0, 0, 0, 1, 0, 1, 0, 1]
Student 12 : [1, 0, 0, 0, 1, 0, 1, 0, 0, 1]
Student 13 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Student 14 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Student 15 : [1, 0, 0, 1, 0, 1, 1, 1, 1, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
Prowadzący 02 : [1, 0, 1, 1, 0, 0, 0, 1, 0, 1]
Prowadzący 03 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
Prowadzący 04 : [1, 1, 0, 1, 1, 0, 1, 0, 1, 1]
Prowadzący 05 : [1, 0, 0, 0, 1, 0, 1, 1, 1, 0]
Prowadzący 06 : [0, 0, 0, 0, 1, 1, 0, 0, 1, 1]
Prowadzący 07 : [0, 0, 0, 0, 1, 1, 1, 0, 1, 1]
Prowadzący 08 : [0, 0, 0, 1, 0, 1, 0, 1, 1, 1]
Prowadzący 09 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Prowadzący 10 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 11 : [1, 0, 0, 0, 0, 1, 0, 1, 0, 1]
Prowadzący 12 : [1, 0, 0, 0, 1, 0, 1, 0, 0, 1]
Prowadzący 13 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 14 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 15 : [1, 0, 0, 1, 0, 1, 1, 1, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `50%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `50%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [49.8, 36.8, 38.7, 62.0, 31.6, 32.7, 40.7, 62.3, 50.9, 39.1, 38.3, 59.0, 62.2, 61.5]`
* `B = [61.9, 55.4, 63.2, 55.6, 67.3, 51.0, 62.7, 68.0, 80.8]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

67
433397.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433397
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [11.0, 61.6, 73.6, 55.9, 42.5, 45.9, 65.6, 32.6, 70.6, 55.6, 56.7, 15.8, 42.3, 59.3, 84.8, 62.4, 40.1]`
`Prowadzący: [86.7, 26.9, 58.0, 56.7, 29.3, 31.0, 76.8, 20.5, 64.8, 36.6, 44.9, 57.3, 74.4, 65.6, 19.8, 68.2, 81.3]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4]`
* dla `XYZ`: `[6, 4, 5, 4, 4, 7, 5, 4, 3, 3, 3, 3, 3, 4, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `52%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `52%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

86
433398.md Normal file
View File

@ -0,0 +1,86 @@
ID_testu: 433398
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[6, 7, 4, 7, 5, 4, 6, 8, 6, 5, 8, 12, 0, 9, 8, 5, 7, 1]`
Grupa testowa: `[1, 3, 4, 3, 5, 1, 2, 9, 11, 4, 6, 4, 4, 4, 3, 2, 0]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 3 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
`[2.0, 12.5, 8.9, 6.2, 14.4, 2.0, 4.4, 19.3, 19.1, 8.0, 15.6, 8.1]`
`[10.4, 8.0, 7.2, 5.6, 2.6, 18.3, 17.5, 9.1, 16.3, 4.5, 13.0, 11.2]`
`[7.5, 13.7, 18.9, 10.8, 8.5, 14.0, 26.5, 2.0, 18.9, 14.4, 9.3, 14.7]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[10.5, 9.0, 19.3, 19.1, 3.5, 15.5, 14.2, 9.8, 10.1, 16.1, 13.3, 14.2]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
`[48.9, 48.67, 46.42, 49.49, 46.17, 37.96, 40.08, 49.74, 41.43, 47.13, 47.9, 39.22, 43.24, 44.77, 37.58, 44.19, 46.4, 45.34, 46.74, 49.79, 46.39, 49.25, 45.68]`
Po podaniu leku XYZ wyniki były następujące:
`[53.2, 53.85, 49.39, 56.25, 48.4, 31.68, 37.63, 49.51, 36.71, 52.31, 50.05, 34.94, 35.75, 51.31, 32.41, 37.86, 53.21, 47.14, 51.49, 59.86, 47.69, 48.18, 47.14]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 7 kobiet i 16 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[37.58, 43.24, 41.43, 40.08, 44.19, 37.96, 39.22]`
- po: `[32.41, 35.75, 36.71, 37.63, 37.86, 31.68, 34.94]`
* Mężczyźni:
- przed: `[49.79, 49.74, 46.4, 48.67, 46.42, 47.13, 46.39, 46.17, 45.68, 44.77, 49.49, 49.25, 46.74, 48.9, 45.34, 47.9]`
- po: `[59.86, 49.51, 53.21, 53.85, 49.39, 52.31, 47.69, 48.4, 47.14, 51.31, 56.25, 48.18, 51.49, 53.2, 47.14, 50.05]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `45` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `22` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `524` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `286` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `15` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
433399.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433399
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [37.2, 100.0, 15.7, 23.3, 1.0, 49.6, 57.7, 24.7, 39.6, 18.5, 71.8, 59.9, 65.3, 54.6, 48.4, 59.0]`
`Prowadzący: [52.0, 84.1, 57.4, 46.1, 31.3, 44.2, 66.8, 22.8, 33.6, 32.5, 46.7, 22.8, 48.9, 28.0, 26.7, 57.2]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[6, 6, 5, 4, 6, 6, 4, 6, 3, 4, 5, 4, 5, 4, 4]`
* dla `XYZ`: `[4, 4, 4, 4, 7, 3, 5, 5, 4, 3, 3, 5, 4, 3, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `52%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `52%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

98
433401.md Normal file
View File

@ -0,0 +1,98 @@
ID_testu: 433401
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
Student 02 : [0, 0, 0, 1, 1, 1, 0, 1, 1, 0]
Student 03 : [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]
Student 04 : [0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Student 05 : [1, 1, 0, 1, 1, 0, 1, 0, 0, 1]
Student 06 : [0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
Student 07 : [1, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Student 08 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
Student 09 : [1, 1, 0, 1, 1, 0, 0, 0, 0, 1]
Student 10 : [1, 0, 0, 1, 0, 1, 1, 0, 1, 1]
Student 11 : [1, 1, 0, 0, 0, 0, 0, 1, 1, 0]
Student 12 : [0, 1, 0, 1, 1, 0, 1, 0, 0, 0]
Student 13 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Student 14 : [1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
Student 15 : [0, 1, 1, 1, 0, 1, 1, 0, 0, 1]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
Prowadzący 02 : [0, 0, 0, 1, 1, 1, 0, 1, 1, 0]
Prowadzący 03 : [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]
Prowadzący 04 : [0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Prowadzący 05 : [1, 1, 0, 1, 1, 0, 1, 0, 0, 1]
Prowadzący 06 : [0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
Prowadzący 07 : [1, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Prowadzący 08 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
Prowadzący 09 : [1, 1, 0, 1, 1, 0, 0, 0, 0, 1]
Prowadzący 10 : [1, 0, 0, 1, 0, 1, 1, 0, 1, 1]
Prowadzący 11 : [1, 1, 0, 0, 0, 0, 0, 1, 1, 0]
Prowadzący 12 : [0, 1, 0, 1, 1, 0, 1, 0, 0, 0]
Prowadzący 13 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Prowadzący 14 : [1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 15 : [0, 1, 1, 1, 0, 1, 1, 0, 0, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `57%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `57%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [56.7, 55.7, 48.4, 59.2, 49.4, 52.6, 64.3, 32.0, 60.4, 47.2, 23.8, 49.2, 28.0, 65.3]`
* `B = [60.4, 57.3, 65.6, 46.9, 60.1, 64.1, 49.9, 64.9, 76.5]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

67
433402.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433402
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [76.2, 84.5, 50.8, 56.9, 73.6, 31.2, 51.7, 100.0, 34.6, 16.0, 25.3, 52.8, 14.3, 62.7, 65.8, 19.8, 49.5, 32.4, 98.3, 60.3]`
`Prowadzący: [99.5, 47.9, 68.6, 42.6, 56.0, 45.0, 57.5, 48.4, 44.4, 62.6, 29.6, 54.1, 45.5, 63.2, 46.1, 50.0, 58.8, 47.0, 53.6, 75.7]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 4, 5, 4, 3, 3, 4, 5, 3, 6, 4, 7, 5, 3, 4, 5, 4]`
* dla `XYZ`: `[3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `49%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `49%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

92
433404.md Normal file
View File

@ -0,0 +1,92 @@
ID_testu: 433404
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 0, 0, 0, 1, 0, 0, 1, 1, 0]
Student 02 : [1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
Student 03 : [1, 0, 0, 1, 0, 1, 0, 0, 1, 0]
Student 04 : [1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
Student 05 : [0, 1, 0, 0, 1, 1, 1, 1, 0, 0]
Student 06 : [1, 0, 1, 1, 1, 1, 0, 1, 1, 0]
Student 07 : [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
Student 08 : [0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Student 09 : [1, 1, 0, 0, 1, 0, 0, 1, 1, 0]
Student 10 : [1, 0, 1, 0, 1, 1, 1, 0, 1, 1]
Student 11 : [0, 1, 1, 1, 1, 0, 0, 1, 0, 0]
Student 12 : [0, 1, 1, 0, 1, 1, 0, 0, 1, 1]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 0, 0, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 02 : [1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
Prowadzący 03 : [1, 0, 0, 1, 0, 1, 0, 0, 1, 0]
Prowadzący 04 : [1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
Prowadzący 05 : [0, 1, 0, 0, 1, 1, 1, 1, 0, 0]
Prowadzący 06 : [1, 0, 1, 1, 1, 1, 0, 1, 1, 0]
Prowadzący 07 : [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 08 : [0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Prowadzący 09 : [1, 1, 0, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 10 : [1, 0, 1, 0, 1, 1, 1, 0, 1, 1]
Prowadzący 11 : [0, 1, 1, 1, 1, 0, 0, 1, 0, 0]
Prowadzący 12 : [0, 1, 1, 0, 1, 1, 0, 0, 1, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `36%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `36%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [36.6, 48.5, 61.6, 67.3, 48.3, 51.3, 52.2, 35.4, 53.2, 50.8, 33.7, 64.0, 53.8, 78.6]`
* `B = [60.7, 46.9, 60.3, 63.6, 71.6, 69.0, 59.6, 48.9, 55.5]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

94
433438.md Normal file
View File

@ -0,0 +1,94 @@
ID_testu: 433438
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[2, 4, 6, 2, 5, 4, 1, 3, 7, 4, 3, 0, 7, 4, 6, 2, 5, 6, 4, 12]`
Grupa testowa: `[4, 6, 5, 9, 5, 7, 5, 3, 5, 2, 3, 4, 5, 3, 7, 6, 6, 2, 1, 6]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
`[3.05, 3.47, 2.98, 3.66, 3.35, 3.48, 2.99, 2.85, 3.24, 2.68, 2.89, 2.85, 3.12, 2.81]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[5.28, 3.64, 3.72, 2.42, 2.87, 3.74, 3.16, 3.56, 2.74, 2.35, 3.95, 2.87, 3.6, 3.13, 1.79]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[2.99, 4.01, 3.04, 3.09, 2.48, 3.56, 3.13, 3.34, 2.45, 3.56, 3.39, 2.89, 4.79, 3.68, 3.59]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
`[47.44, 42.32, 44.19, 47.22, 45.65, 44.97, 39.99, 44.96, 41.3, 46.27, 43.33, 46.13, 50.82, 46.21, 47.47, 47.97, 47.13, 45.66, 43.51, 47.29, 45.37, 41.95, 47.51, 46.45, 41.88, 41.09, 44.69, 44.54, 46.28]`
Po podaniu leku XYZ wyniki były następujące:
`[56.72, 34.72, 34.29, 51.26, 48.77, 39.26, 35.02, 41.06, 35.46, 46.31, 46.75, 38.38, 55.53, 44.76, 51.67, 50.27, 50.82, 48.95, 33.6, 49.12, 52.15, 34.96, 53.08, 48.07, 34.57, 35.07, 46.36, 47.49, 51.06]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 11 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[42.32, 44.96, 41.88, 46.13, 44.19, 44.97, 41.95, 41.09, 43.51, 39.99, 41.3]`
- po: `[34.72, 41.06, 34.57, 38.38, 34.29, 39.26, 34.96, 35.07, 33.6, 35.02, 35.46]`
* Mężczyźni:
- przed: `[46.45, 47.44, 46.28, 50.82, 47.29, 47.47, 44.69, 45.66, 47.51, 46.27, 47.13, 45.37, 44.54, 47.97, 45.65, 47.22, 46.21, 43.33]`
- po: `[48.07, 56.72, 51.06, 55.53, 49.12, 51.67, 46.36, 48.95, 53.08, 46.31, 50.82, 52.15, 47.49, 50.27, 48.77, 51.26, 44.76, 46.75]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+8.6 %` wagi,
* `+10.9 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
wagi = `[278, 335, 309, 319, 279, 268, 300, 254, 271, 268, 290, 264, 364, 286, 290, 229, 250, 291, 264, 283, 244, 226, 301, 250, 285]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
433468.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433468
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [67.9, 73.8, 19.7, 48.7, 41.7, 21.5, 20.6, 72.0, 16.6, 74.1, 72.7, 20.2, 58.9, 100.0, 41.3, 33.5, 56.9, 53.4]`
`Prowadzący: [47.5, 47.4, 76.9, 82.6, 28.6, 34.4, 67.4, 31.4, 41.5, 50.5, 47.9, 35.0, 59.7, 47.8, 66.0, 61.7, 48.8, 25.5]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 5, 5, 4, 6, 4, 3, 4, 5, 5, 4, 4, 4, 8, 5, 4, 5, 4, 4, 4]`
* dla `XYZ`: `[3, 5, 5, 4, 5, 3, 3, 5, 6, 5, 6, 4, 4, 3, 3, 4, 5, 3, 3, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `11%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `11%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

94
433469.md Normal file
View File

@ -0,0 +1,94 @@
ID_testu: 433469
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
Student 02 : [1, 0, 0, 1, 0, 1, 0, 0, 0, 1]
Student 03 : [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
Student 04 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 0]
Student 05 : [1, 0, 1, 0, 0, 0, 1, 1, 0, 1]
Student 06 : [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]
Student 07 : [1, 0, 1, 0, 1, 1, 1, 1, 0, 1]
Student 08 : [0, 1, 1, 1, 1, 1, 0, 1, 0, 0]
Student 09 : [0, 0, 1, 1, 1, 1, 1, 0, 1, 1]
Student 10 : [1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Student 11 : [1, 0, 0, 1, 1, 0, 1, 1, 1, 1]
Student 12 : [0, 0, 1, 1, 1, 0, 0, 1, 1, 0]
Student 13 : [0, 0, 0, 0, 1, 1, 0, 1, 1, 1]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
Prowadzący 02 : [1, 0, 0, 1, 0, 1, 0, 0, 0, 1]
Prowadzący 03 : [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
Prowadzący 04 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 0]
Prowadzący 05 : [1, 0, 1, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 06 : [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]
Prowadzący 07 : [1, 0, 1, 0, 1, 1, 1, 1, 0, 1]
Prowadzący 08 : [0, 1, 1, 1, 1, 1, 0, 1, 0, 0]
Prowadzący 09 : [0, 0, 1, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 10 : [1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 11 : [1, 0, 0, 1, 1, 0, 1, 1, 1, 1]
Prowadzący 12 : [0, 0, 1, 1, 1, 0, 0, 1, 1, 0]
Prowadzący 13 : [0, 0, 0, 0, 1, 1, 0, 1, 1, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `41%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `41%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [41.3, 43.6, 36.0, 57.4, 49.6, 54.0, 43.2, 48.3, 66.8, 35.2, 63.8, 52.0, 42.4, 45.1]`
* `B = [62.3, 60.2, 67.0, 49.6, 54.4, 61.8, 62.4, 63.1, 57.3]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

98
433472.md Normal file
View File

@ -0,0 +1,98 @@
ID_testu: 433472
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 0, 1, 1, 0, 1, 0, 0]
Student 02 : [1, 1, 0, 1, 1, 1, 1, 1, 0, 0]
Student 03 : [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]
Student 04 : [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
Student 05 : [1, 1, 1, 0, 1, 0, 1, 1, 1, 0]
Student 06 : [0, 1, 1, 0, 0, 0, 0, 1, 0, 1]
Student 07 : [1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Student 08 : [0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
Student 09 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Student 10 : [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]
Student 11 : [1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
Student 12 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Student 13 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 14 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Student 15 : [1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 0, 1, 1, 0, 1, 0, 0]
Prowadzący 02 : [1, 1, 0, 1, 1, 1, 1, 1, 0, 0]
Prowadzący 03 : [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]
Prowadzący 04 : [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
Prowadzący 05 : [1, 1, 1, 0, 1, 0, 1, 1, 1, 0]
Prowadzący 06 : [0, 1, 1, 0, 0, 0, 0, 1, 0, 1]
Prowadzący 07 : [1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 08 : [0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
Prowadzący 09 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 10 : [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 11 : [1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
Prowadzący 12 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Prowadzący 13 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 14 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Prowadzący 15 : [1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `51%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `51%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [50.7, 46.8, 52.4, 74.8, 29.1, 33.1, 54.5, 26.5, 31.0, 42.4, 34.5, 50.1, 54.7, 36.9]`
* `B = [67.1, 57.5, 53.3, 64.8, 41.5, 55.1, 72.1, 64.0, 58.7]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

67
433474.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433474
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [88.8, 35.4, 43.4, 59.4, 56.8, 63.2, 34.8, 62.4, 33.8, 65.7, 45.5, 45.4, 39.5, 9.7, 77.4, 38.7, 25.8, 53.5, 60.4]`
`Prowadzący: [14.7, 48.5, 59.4, 15.4, 29.9, 32.3, 57.5, 48.3, 34.3, 76.8, 35.9, 55.6, 25.7, 64.5, 48.6, 17.8, 72.7, 43.3, 64.8]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 3, 3, 6, 5, 3, 4, 4, 4, 5, 5, 4, 4, 4, 3]`
* dla `XYZ`: `[4, 3, 6, 4, 3, 6, 4, 3, 5, 4, 5, 5, 4, 5, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `54%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `54%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

86
433476.md Normal file
View File

@ -0,0 +1,86 @@
ID_testu: 433476
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
Student 02 : [0, 1, 0, 0, 0, 0, 1, 1, 1, 0]
Student 03 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Student 04 : [0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
Student 05 : [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
Student 06 : [0, 1, 1, 0, 1, 0, 0, 1, 0, 0]
Student 07 : [0, 0, 0, 0, 1, 1, 0, 1, 0, 1]
Student 08 : [1, 0, 1, 0, 1, 1, 0, 1, 0, 0]
Student 09 : [0, 1, 1, 0, 0, 1, 0, 1, 1, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
Prowadzący 02 : [0, 1, 0, 0, 0, 0, 1, 1, 1, 0]
Prowadzący 03 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Prowadzący 04 : [0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
Prowadzący 05 : [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
Prowadzący 06 : [0, 1, 1, 0, 1, 0, 0, 1, 0, 0]
Prowadzący 07 : [0, 0, 0, 0, 1, 1, 0, 1, 0, 1]
Prowadzący 08 : [1, 0, 1, 0, 1, 1, 0, 1, 0, 0]
Prowadzący 09 : [0, 1, 1, 0, 0, 1, 0, 1, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `21%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `21%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [21.7, 31.1, 40.2, 45.5, 30.2, 55.4, 32.5, 54.8, 21.5, 55.7, 44.2, 45.0, 40.6, 37.6]`
* `B = [51.7, 60.6, 59.4, 55.4, 57.1, 51.1, 67.9, 67.1, 59.7]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

84
433477.md Normal file
View File

@ -0,0 +1,84 @@
ID_testu: 433477
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[5, 6, 7, 3, 5, 5, 4, 7, 4, 6, 4, 3, 2, 2, 5, 3, 10, 2, 4, 4]`
Grupa testowa: `[3, 6, 7, 3, 10, 5, 3, 5, 7, 5, 3, 6, 6, 3, 6, 4, 5, 5]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
`[3.11, 2.77, 3.4, 3.08, 3.72, 2.95, 2.78, 2.85, 3.3, 3.24, 3.08, 3.26]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[3.89, 2.99, 3.9, 3.65, 4.07, 3.78, 3.05, 5.05, 3.19, 3.71, 4.08, 3.27, 3.89]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.8, 3.27, 3.21, 3.29, 3.82, 2.96, 2.84, 2.64, 3.08, 3.63, 3.22, 3.83, 2.98]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 17 meczy każdej z drużn skończyły się następującymi wynikami:
* ABC vs ???:
`1:3, 0:0, 2:0, 4:3, 1:0, 1:1, 0:1, 0:1, 0:0, 2:5, 0:0, 0:3, 1:1, 1:0, 1:0, 3:1, 1:0`
* XYZ vs ???:
`4:3, 2:4, 3:5, 2:4, 2:4, 0:4, 5:2, 3:3, 4:2, 5:2, 4:3, 6:5, 1:4, 6:3, 2:3, 2:3, 4:1`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+9.7 %` wagi,
* `+12.5 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
wagi = `[316, 287, 345, 276, 260, 266, 307, 301, 287, 303, 300, 254, 301, 288, 309, 294, 257, 360, 264, 291, 310, 268, 300]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `27` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
433478.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433478
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [50.8, 46.1, 67.4, 46.7, 36.5, 39.8, 58.8, 59.7, 43.1, 56.2, 50.8, 41.2, 52.5, 39.3, 32.0, 36.0, 78.6, 41.8, 93.6, 68.4]`
`Prowadzący: [85.7, 66.9, 52.5, 50.8, 46.4, 100.0, 70.6, 30.7, 52.4, 91.1, 35.6, 80.8, 33.7, 37.7, 30.4, 67.8, 61.4, 100.0, 76.3, 42.8]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[7, 3, 3, 3, 3, 5, 6, 6, 3, 3, 5, 7, 3, 4, 4, 4, 3, 5, 3, 4]`
* dla `XYZ`: `[4, 4, 4, 5, 4, 3, 4, 3, 4, 3, 5, 4, 3, 3, 5, 3, 4, 3, 4, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `40%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `40%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

94
433479.md Normal file
View File

@ -0,0 +1,94 @@
ID_testu: 433479
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 0, 0, 1, 0, 1, 1, 0, 1]
Student 02 : [0, 1, 0, 1, 1, 1, 1, 0, 1, 1]
Student 03 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 1]
Student 04 : [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
Student 05 : [0, 0, 0, 0, 0, 1, 0, 1, 1, 0]
Student 06 : [1, 0, 0, 0, 0, 1, 0, 1, 1, 1]
Student 07 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Student 08 : [1, 0, 1, 0, 1, 1, 0, 0, 0, 1]
Student 09 : [0, 1, 1, 0, 0, 0, 1, 0, 1, 0]
Student 10 : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Student 11 : [1, 1, 0, 1, 1, 1, 1, 0, 0, 0]
Student 12 : [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
Student 13 : [1, 0, 1, 0, 0, 1, 1, 1, 0, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 0, 0, 1, 0, 1, 1, 0, 1]
Prowadzący 02 : [0, 1, 0, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 03 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 04 : [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
Prowadzący 05 : [0, 0, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 06 : [1, 0, 0, 0, 0, 1, 0, 1, 1, 1]
Prowadzący 07 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 08 : [1, 0, 1, 0, 1, 1, 0, 0, 0, 1]
Prowadzący 09 : [0, 1, 1, 0, 0, 0, 1, 0, 1, 0]
Prowadzący 10 : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 11 : [1, 1, 0, 1, 1, 1, 1, 0, 0, 0]
Prowadzący 12 : [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
Prowadzący 13 : [1, 0, 1, 0, 0, 1, 1, 1, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `70%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `70%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [69.6, 45.1, 32.5, 44.8, 31.5, 41.1, 61.4, 44.1, 56.0, 71.3, 45.2, 44.5, 61.0, 55.9]`
* `B = [66.0, 61.1, 74.4, 63.9, 52.4, 58.0, 66.5, 46.5, 67.3]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

100
433480.md Normal file
View File

@ -0,0 +1,100 @@
ID_testu: 433480
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
* Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 1, 0, 0, 1, 1, 0, 1, 1]
Student 02 : [0, 1, 0, 1, 0, 0, 0, 1, 1, 1]
Student 03 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 1]
Student 04 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 1]
Student 05 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
Student 06 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 1]
Student 07 : [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]
Student 08 : [1, 0, 0, 0, 0, 0, 1, 1, 0, 1]
Student 09 : [0, 1, 1, 0, 1, 0, 0, 0, 1, 0]
Student 10 : [1, 0, 1, 0, 1, 0, 0, 0, 1, 0]
Student 11 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Student 12 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Student 13 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
Student 14 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 0]
Student 15 : [1, 0, 0, 0, 0, 1, 1, 0, 0, 1]
Student 16 : [0, 1, 0, 1, 0, 1, 0, 0, 1, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 1, 0, 0, 1, 1, 0, 1, 1]
Prowadzący 02 : [0, 1, 0, 1, 0, 0, 0, 1, 1, 1]
Prowadzący 03 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 1]
Prowadzący 04 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 05 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
Prowadzący 06 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 1]
Prowadzący 07 : [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]
Prowadzący 08 : [1, 0, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 09 : [0, 1, 1, 0, 1, 0, 0, 0, 1, 0]
Prowadzący 10 : [1, 0, 1, 0, 1, 0, 0, 0, 1, 0]
Prowadzący 11 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 12 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Prowadzący 13 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
Prowadzący 14 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 0]
Prowadzący 15 : [1, 0, 0, 0, 0, 1, 1, 0, 0, 1]
Prowadzący 16 : [0, 1, 0, 1, 0, 1, 0, 0, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
> `TAK` stanowi `66%` wszystkich odpowiedzi.
1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `66%` wszystkich odpowiedzi.
**Zadanie 3:**
Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* `A = [65.1, 38.7, 56.1, 55.3, 42.4, 65.3, 48.7, 61.5, 58.5, 68.7, 43.5, 28.8, 44.1, 53.9]`
* `B = [76.4, 62.7, 68.2, 57.6, 59.4, 59.6, 71.3, 71.4, 49.1]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:**
Zdefiniować czym jest cytat, parafraza, plagiat.
1. Czy i kiedy powinno się używać cytatu?
2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?

67
433485.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433485
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [75.1, 61.9, 51.5, 64.8, 38.6, 58.3, 20.7, 66.3, 54.2, 34.8, 49.2]`
`Prowadzący: [39.5, 18.1, 59.0, 74.7, 73.0, 60.0, 27.7, 53.2, 43.5, 17.4, 46.8]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `17` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 3, 4, 5, 4, 3, 3, 5, 4, 4, 4, 3, 4, 3, 4, 6, 4]`
* dla `XYZ`: `[5, 3, 3, 6, 5, 3, 3, 6, 5, 4, 4, 3, 4, 5, 4, 3, 3]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `66%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `66%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

82
433503.md Normal file
View File

@ -0,0 +1,82 @@
ID_testu: 433503
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[4, 4, 11, 4, 4, 3, 7, 3, 3, 7, 5, 0, 2, 7, 6, 4, 2, 6, 6]`
Grupa testowa: `[5, 5, 6, 6, 7, 5, 2, 6, 6, 3, 5, 5, 6, 2, 3, 3]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
`[3.2, 2.96, 3.3, 2.93, 3.53, 3.02, 2.59, 3.04, 3.26, 2.74, 3.06, 3.23, 2.97, 2.63]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[2.73, 3.15, 2.92, 3.88, 3.14, 3.15, 5.09, 2.3, 2.63, 2.56, 4.23]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.4, 2.99, 3.73, 3.51, 2.28, 3.15, 4.03, 3.37, 3.04, 2.51, 3.65]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 19 meczy każdej z drużn skończyły się następującymi wynikami:
* ABC vs ???:
`3:1, 2:1, 2:3, 2:1, 1:0, 4:0, 2:1, 1:3, 1:1, 2:1, 1:1, 1:2, 2:0, 2:1, 1:0, 1:2, 3:1, 2:2, 1:3`
* XYZ vs ???:
`2:6, 4:5, 3:4, 2:4, 3:1, 7:2, 2:2, 2:5, 4:3, 1:3, 0:5, 5:2, 2:3, 3:4, 4:2, 6:4, 3:1, 1:4, 3:7`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+10.9 %` wagi,
* `+15.5 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
wagi = `[304, 274, 322, 281, 247, 283, 301, 259, 285, 298, 278, 251, 245, 264, 253, 297, 264, 264, 353, 225, 240]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

82
440042.md Normal file
View File

@ -0,0 +1,82 @@
ID_testu: 440042
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[5, 6, 10, 7, 8, 3, 4, 7, 4, 5, 2, 5, 5, 6, 5, 5, 9, 5]`
Grupa testowa: `[3, 4, 6, 5, 1, 4, 2, 6, 6, 6, 7, 3, 7, 4, 1, 2]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
`[2.81, 3.04, 3.47, 2.83, 2.71, 3.0, 2.41, 3.22, 3.22, 3.08, 3.39, 2.61, 3.31, 2.9]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[3.24, 2.38, 4.26, 3.83, 3.64, 3.91, 4.98, 3.39, 3.86, 2.62, 2.9]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.58, 2.81, 3.25, 2.89, 3.09, 3.19, 4.17, 3.14, 3.35, 4.05, 3.11]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 19 meczy każdej z drużn skończyły się następującymi wynikami:
* ABC vs ???:
`1:3, 1:4, 2:1, 1:1, 2:0, 1:0, 1:3, 2:1, 3:3, 0:2, 2:0, 2:3, 0:1, 1:1, 1:1, 0:1, 3:1, 3:1, 2:2`
* XYZ vs ???:
`5:1, 4:0, 1:3, 2:4, 3:2, 3:4, 4:3, 2:5, 1:4, 2:3, 3:2, 2:3, 7:3, 6:3, 2:4, 4:3, 3:2, 5:2, 1:1`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
**Zadanie 4:**
Prowadzimy badania na szczurach.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+9.5 %` wagi,
* `+14.9 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik.
Dysponujesz już pomiarami wag grupy kontrolnej:
wagi = `[309, 269, 262, 280, 243, 294, 294, 285, 304, 256, 299, 274, 271, 240, 307, 292, 285, 295, 333, 276, 293]`
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
440469.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 440469
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [63.0, 48.6, 66.5, 58.7, 49.5, 78.5, 79.9, 67.1, 50.1, 91.7, 29.2]`
`Prowadzący: [15.9, 72.7, 58.1, 61.0, 53.2, 39.9, 22.0, 37.4, 31.9, 61.2, 38.3]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 4, 4, 3, 5, 4, 3, 4, 4, 5, 3, 6, 4, 4, 4]`
* dla `XYZ`: `[4, 3, 3, 3, 4, 3, 4, 5, 3, 3, 4, 4, 4, 5, 3, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `45%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `45%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
440474.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 440474
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [100.0, 32.4, 61.5, 52.8, 78.5, 71.2, 38.1, 47.2, 73.1, 31.0, 44.4, 92.1, 40.2, 11.5, 63.9, 57.0]`
`Prowadzący: [56.3, 21.0, 23.0, 72.7, 73.3, 48.4, 41.7, 72.3, 13.2, 57.9, 58.5, 74.5, 49.3, 47.2, 35.0, 31.3]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `17` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 6, 5, 6, 5, 3, 3, 4, 4, 3, 3, 4, 5, 3, 5, 4, 5]`
* dla `XYZ`: `[4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 5, 4, 3, 4, 5, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `57%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `57%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

76
440475.md Normal file
View File

@ -0,0 +1,76 @@
ID_testu: 440475
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[4, 9, 6, 5, 4, 2, 3, 5, 4, 0, 4, 6, 5, 6, 3, 4, 6, 7, 4, 8, 6]`
Grupa testowa: `[3, 5, 5, 6, 5, 4, 5, 6, 7, 8, 3, 3, 7, 3, 1, 8, 7, 6, 5, 3]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw.
Na pola wyszło 3 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy:
`[5.7, 11.5, 12.6, 15.7, 13.4, 10.5, 11.4, 15.4, 14.0]`
`[19.1, 4.7, 4.5, 13.2, 5.1, 2.0, 18.3, 13.6, 10.9]`
`[9.0, 3.9, 11.6, 13.2, 9.7, 20.0, 14.0, 9.0, 10.6]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[8.3, 10.7, 11.1, 3.2, 10.0, 13.7, 12.8, 13.5, 8.2]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 15 meczy każdej z drużn skończyły się następującymi wynikami:
* ABC vs ???:
`2:3, 2:6, 1:6, 0:5, 0:2, 3:1, 1:2, 1:2, 1:1, 3:1, 2:1, 0:4, 1:0, 3:0, 2:1`
* XYZ vs ???:
`1:4, 4:5, 1:4, 1:5, 2:3, 0:3, 2:3, 2:3, 2:3, 3:2, 4:4, 1:5, 0:3, 3:3, 4:4`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `57` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `30` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `426` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `298` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `25` zawodowych sportowców;
* `21` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
440479.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 440479
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [39.3, 50.9, 51.7, 62.3, 50.2, 57.3, 34.6, 44.4, 48.3, 65.4, 47.3, 54.2, 43.7]`
`Prowadzący: [32.4, 67.5, 42.8, 34.7, 66.7, 62.9, 36.3, 55.6, 46.8, 49.5, 69.4, 84.8, 51.8]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 6, 5, 4, 3, 3, 4, 3, 5, 5, 3, 4, 4, 5, 3]`
* dla `XYZ`: `[3, 3, 4, 4, 3, 4, 3, 3, 5, 4, 3, 4, 4, 6, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `71%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `71%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

91
442325.md Normal file
View File

@ -0,0 +1,91 @@
ID_testu: 442325
**Zadanie 1:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[4, 8, 0, 7, 0, 4, 6, 8, 1, 7, 0, 1, 2, 3, 7, 7, 6, 4, 3, 8, 4]`
Grupa testowa: `[2, 3, 5, 5, 5, 6, 5, 3, 4, 5, 7, 4, 5, 5, 2, 6, 3, 7, 2, 5]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A.
Z pól po lewej stronie drogi zebrano
`[2.17, 2.86, 2.86, 2.97, 3.22, 3.03, 3.12, 2.95, 2.66, 3.37, 3.43, 3.08]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował
`[4.08, 4.14, 2.96, 4.12, 3.03, 3.86, 2.77, 3.35, 3.32, 2.7, 3.22, 4.02, 2.24, 4.58, 2.09]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.0, 3.49, 3.73, 2.26, 3.73, 2.18, 2.17, 2.51, 2.88, 3.65, 3.51, 3.66, 3.41, 2.72, 3.98]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki:
`[48.25, 41.83, 48.37, 42.73, 42.2, 46.41, 48.34, 43.4, 47.78, 45.84, 48.12, 36.81, 47.31, 39.86, 48.62, 41.12, 41.66, 48.38, 41.12, 46.62, 46.67, 45.99, 45.28, 45.43]`
Po podaniu leku XYZ wyniki były następujące:
`[53.03, 34.34, 52.58, 32.14, 37.58, 49.31, 52.17, 37.67, 53.86, 50.49, 51.82, 27.7, 48.95, 29.41, 48.87, 38.05, 37.13, 47.23, 30.93, 46.47, 52.47, 46.91, 51.98, 46.48]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 9 kobiet i 15 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[36.81, 41.12, 41.12, 41.83, 43.4, 42.2, 42.73, 41.66, 39.86]`
- po: `[27.7, 38.05, 30.93, 34.34, 37.67, 37.58, 32.14, 37.13, 29.41]`
* Mężczyźni:
- przed: `[48.38, 48.62, 47.31, 48.25, 48.37, 45.84, 48.34, 45.99, 47.78, 45.43, 46.67, 46.62, 45.28, 46.41, 48.12]`
- po: `[47.23, 48.87, 48.95, 53.03, 52.58, 50.49, 52.17, 46.91, 53.86, 46.48, 52.47, 46.47, 51.98, 49.31, 51.82]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując).
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `51` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `25` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `406` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `283` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,62 +0,0 @@
ID_testu: 443374
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z chemii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[5, 4, 8, 9, 6, 4, 7, 4, 0, 4, 7, 6, 9, 6, 3, 6, 6, 6, 4, 5]`
Grupa testowa: `[9, 4, 7, 6, 3, 2, 2, 8, 0, 8, 2, 4, 5, 3, 3, 6, 6, 3]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `41` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `525` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `261` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `27` zawodowych sportowców;
* `21` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,62 +0,0 @@
ID_testu: 443375
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z biologii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[4, 2, 4, 5, 1, 3, 8, 5, 6, 6, 6, 9, 7, 5, 7, 8, 6, 1, 6, 8]`
Grupa testowa: `[6, 7, 3, 4, 2, 4, 4, 4, 3, 4, 7, 1, 5, 4, 4, 3, 3, 8]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `49` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `23` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `411` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `250` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `25` zawodowych sportowców;
* `22` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,60 +0,0 @@
ID_testu: 443377
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z matematyki z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[8, 7, 6, 7, 3, 5, 8, 6, 2, 0, 2, 4, 6, 7, 8, 3, 9, 3, 1, 7, 4]`
Grupa testowa: `[7, 6, 4, 6, 3, 0, 0, 8, 5, 3, 0, 5, 7, 7, 7, 2]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `41` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `21` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `431` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `306` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,56 +0,0 @@
ID_testu: 443378
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z geografii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[89, 95, 97, 112, 104, 57, 57, 70, 102, 121, 99, 125, 27, 118, 40, 159, 75, 80, 101, 106, 101, 93, 83, 112, 102, 95, 90]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `41` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `22` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `502` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `229` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,58 +0,0 @@
ID_testu: 443380
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z języka polskiego z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[77, 103, 120, 119, 131, 98, 96, 170, 136, 112, 160, 106, 125, 97, 54, 60, 129, 100, 59, 76, 114, 113, 83, 70, 137, 126]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `52` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `29` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `478` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `308` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `28` zawodowych sportowców;
* `24` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,56 +0,0 @@
ID_testu: 443381
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z geografii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[47, 81, 58, 113, 126, 88, 53, 95, 61, 46, 75, 102, 60, 116, 43, 116, 49, 101, 50, 92, 84, 70, 119, 118, 31, 151, 118, 91]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `41` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `30` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `522` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `239` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `15` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,58 +0,0 @@
ID_testu: 443382
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z języka polskiego z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[138, 101, 132, 98, 88, 89, 135, 117, 132, 139, 90, 107, 138, 149, 72, 131, 52, 91, 72, 106, 86, 140, 154, 140, 103, 79, 138, 114, 72, 165]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `60` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `25` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `572` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `281` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `24` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,60 +0,0 @@
ID_testu: 443385
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z biologii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[5, 5, 1, 8, 5, 5, 5, 4, 6, 6, 3, 7, 8, 5, 4, 3, 4, 5, 4, 6]`
Grupa testowa: `[6, 5, 3, 6, 4, 5, 5, 7, 4, 4, 6, 4, 9, 4, 6, 7, 3, 5]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `56` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `23` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `471` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `300` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `18` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,60 +0,0 @@
ID_testu: 443386
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z biologii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[8, 5, 3, 8, 3, 5, 3, 5, 10, 5, 5, 10, 1, 3, 6, 5, 2, 5, 8, 6, 9, 4]`
Grupa testowa: `[4, 5, 6, 7, 7, 8, 5, 8, 0, 3, 5, 6, 6, 7, 4, 5, 4]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `47` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `27` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `443` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `259` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `15` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,58 +0,0 @@
ID_testu: 443387
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z matematyki z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[91, 150, 112, 174, 155, 132, 175, 105, 114, 128, 92, 123, 106, 130, 106, 95, 135, 92, 128, 74, 53, 95, 175, 147]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `53` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `21` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `426` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `308` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `27` zawodowych sportowców;
* `20` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,60 +0,0 @@
ID_testu: 443389
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z biologii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[4, 1, 8, 0, 0, 4, 3, 4, 6, 4, 4, 8, 9, 5, 2, 4, 7, 8]`
Grupa testowa: `[8, 5, 0, 3, 3, 2, 4, 3, 3, 2, 5, 6, 3, 3, 8, 10, 5, 3, 8, 5]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `49` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `25` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `453` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `309` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,58 +0,0 @@
ID_testu: 443390
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z matematyki z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[96, 78, 154, 116, 53, 117, 102, 62, 94, 149, 85, 106, 90, 59, 53, 74, 63, 139, 85, 135, 141, 70, 69, 80, 101, 94, 110, 32, 119, 24]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `44` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `26` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `484` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `275` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `26` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,56 +0,0 @@
ID_testu: 443391
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które nie są (lub o których można argumentować, że nie są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z chemii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[88, 89, 90, 104, 92, 53, 95, 129, 62, 93, 138, 67, 131, 134, 149, 145, 112, 128, 131, 95, 72, 86, 110, 97, 141, 118, 112, 62]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `51` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `21` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `500` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `305` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `15` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,58 +0,0 @@
ID_testu: 448375
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z geografii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią.
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[60, 134, 101, 38, 74, 97, 61, 123, 99, 122, 77, 89, 72, 124, 82, 30, 66, 129, 61, 72, 99, 67, 137, 87, 87, 61, 74, 105, 79]`
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm.
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `49` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `30` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `514` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `268` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `29` zawodowych sportowców;
* `25` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,60 +0,0 @@
ID_testu: 450472
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z języka polskiego z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[1, 4, 9, 7, 4, 5, 5, 3, 9, 6, 7, 9, 5, 6, 9, 5, 7, 6, 7]`
Grupa testowa: `[8, 4, 3, 2, 3, 5, 6, 6, 2, 2, 6, 5, 5, 3, 0, 6, 7, 4, 6]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `56` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `29` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `519` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `284` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `18` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -1,60 +0,0 @@
ID_testu: 450473
**Zadanie 1:**
Podaj trzy przykłady (jakościowo inne niż w przykładach na wykładzie) pomiarów które są (lub o których można argumentować, że są w przybliżeniu) rozłożone normalnie.
Uzasadnij swoją odpowiedź i wskaż jakie czynniki przy zbieraniu danych mogłyby tę (nie)normalność zakłócić.
**Zadanie 2:**
Wyniki egzaminu (na którym można zdobyć od `0` do `100` punktów) dobrze dostosowanego trudnością powinny być rozłożone w przybliżeniu normalnie, ze średnią ok. `50` i odchyleniem standardowym ok. `16`.
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był w nieuczciwy sposób oceniany (np. egzaminatorzy celowo ucinający punkty tuż pod progiem zdawalności)?
* Czym (przykładowo) będzie się charakteryzował histogram egzaminu który był zbyt łatwy dla zdających?
* Proszę znaleźć na stronie ministerstwa dane dotyczące wyników matury podstawowej z chemii z tego roku i
* (używając excela, lub innego oprogramowania) przygotować histogram liczby uzyskanych punktów (ilościowy, lub częstościowy). Jaka jest najlepsza/najbardziej naturalna szerokość pojedycznego słupka?
* Czy wyniki z tego egzaminu są rozłożone normalnie? Dlaczego, dlaczego nie? (proszę **nie** używać testów statystycznych (np. Shapiro-Wilka) tylko argumentować "z wykresu").
* Proszę policzyć średnią, miedianę i odchylenie standardowe tych danych.
* Jakie wnioski można wysnuć o "procesie maturalnym" na podstawie tych wyników? Czy egzamin jest dobrze dostosowany trudnością do poziomu liceum? Za prosty? Za trudny?
**Zadanie 3:**
Testujemy nowy lek na ból istnienia.
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu:
Grupa kontrolna: `[8, 5, 10, 7, 5, 4, 3, 6, 5, 8, 7, 4, 0, 7, 7, 2, 6, 2]`
Grupa testowa: `[6, 0, 5, 6, 6, 3, 4, 2, 4, 1, 4, 6, 6, 5, 4, 2, 3, 2, 5]`
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia.
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego?
**Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że utrzymuje ciągły kontakt z *tamtą stroną* i potrafi odgadywać położenia przedmiotów których nie widzi.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział stronę monety)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową? (Trudne!)
5. Na peronie wykonaliście `49` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `24` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `593` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `279` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.