2019-05-04 18:28:09 +02:00
\documentclass [12pt, twoside] { article}
2019-05-29 20:16:36 +02:00
2019-05-04 18:28:09 +02:00
\usepackage { amssymb}
\usepackage { amsmath}
2019-05-29 20:16:36 +02:00
\usepackage { advdate}
\usepackage { amsthm}
2019-05-04 18:28:09 +02:00
\usepackage [english] { babel}
2019-05-29 20:16:36 +02:00
\usepackage { comment}
2019-05-04 18:28:09 +02:00
\usepackage { csquotes}
2019-05-29 20:16:36 +02:00
\usepackage [useregional] { datetime2}
\usepackage { enumitem}
\usepackage { fontspec}
2019-05-04 18:28:09 +02:00
\usepackage { float}
2019-05-29 20:16:36 +02:00
\usepackage { graphicx}
2019-05-28 00:13:20 +02:00
\usepackage { hyperref}
2019-05-29 20:16:36 +02:00
\usepackage { mathtools}
\usepackage { pict2e}
\usepackage [pdf] { pstricks}
2019-05-29 15:54:14 +02:00
\usepackage { tikz}
2019-05-29 20:16:36 +02:00
\usepackage { titlesec}
\usepackage { xfrac}
\usepackage { unicode-math}
2019-05-29 15:54:14 +02:00
\usetikzlibrary { cd}
2019-05-29 20:16:36 +02:00
2019-05-28 00:13:20 +02:00
\hypersetup {
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
2019-05-04 18:28:09 +02:00
2019-05-29 20:16:36 +02:00
\newtheoremstyle { break}
{ \topsep } { \topsep } %
{ \itshape } { } %
{ \bfseries } { } %
{ \newline } { } %
\theoremstyle { break}
2019-06-03 04:22:10 +02:00
\newtheorem { lemma} { Lemma} [section]
\newtheorem { fact} { Fact} [section]
\newtheorem { corollary} { Corollary} [section]
\newtheorem { proposition} { Proposition} [section]
\newtheorem { example} { Example} [section]
\newtheorem { definition} { Definition} [section]
\newtheorem { theorem} { Theorem} [section]
2019-05-29 20:16:36 +02:00
\newcommand { \contradiction } { %
\ensuremath { { \Rightarrow \mspace { -2mu} \Leftarrow } } }
2019-05-28 00:13:20 +02:00
\newcommand * \quot [2] { { ^ { \textstyle #1} \big /_ { \textstyle #2} } }
2019-06-03 04:22:10 +02:00
2019-05-29 20:16:36 +02:00
\newcommand { \overbar } [1]{ %
\mkern 1.5mu=\overline { %
\mkern -1.5mu#1\mkern -1.5mu} %
\mkern 1.5mu}
2019-06-03 04:22:10 +02:00
\newcommand { \sdots } { \smash { \vdots } }
2019-05-29 20:16:36 +02:00
\AtBeginDocument { \renewcommand { \setminus } { %
\mathbin { \backslash } } }
2019-05-28 00:13:20 +02:00
\DeclareMathOperator { \Hom } { Hom}
2019-05-29 15:54:14 +02:00
\DeclareMathOperator { \rank } { rank}
2019-06-03 04:22:10 +02:00
\DeclareMathOperator { \Gl } { Gl}
2019-05-29 20:16:36 +02:00
2019-06-03 04:22:10 +02:00
\titleformat { \section } { \normalfont \fontsize { 12} { 15} \bfseries } { %
Lecture\ \thesection } %
{ 2.3ex plus .2ex} { }
\titlespacing * { \section }
{ 0pt} { 16.5ex plus 1ex minus .2ex} { 4.3ex plus .2ex}
2019-05-29 20:16:36 +02:00
2019-06-03 04:22:10 +02:00
\setlist [itemize] { topsep=0pt,before=%
\leavevmode \vspace { 0.5em} }
2019-05-29 20:16:36 +02:00
2019-05-04 18:28:09 +02:00
2019-05-28 00:13:20 +02:00
\input { knots_ macros}
2019-05-29 20:16:36 +02:00
\graphicspath { { images/} }
2019-05-04 18:28:09 +02:00
\begin { document}
2019-05-29 15:54:14 +02:00
\tableofcontents
2019-05-28 00:13:20 +02:00
%\newpage
2019-05-04 18:28:09 +02:00
%\input{myNotes}
2019-06-03 04:22:10 +02:00
\section { Basic definitions \hfill \DTMdate { 2019-02-25} }
2019-05-04 18:28:09 +02:00
\begin { definition}
2019-05-28 00:13:20 +02:00
A knot $ K $ in $ S ^ 3 $ is a smooth (PL - smooth) embedding of a circle $ S ^ 1 $ in $ S ^ 3 $ :
2019-05-04 18:28:09 +02:00
\begin { align*}
\varphi : S^ 1 \hookrightarrow S^ 3
\end { align*}
\end { definition}
2019-05-28 00:13:20 +02:00
\noindent
2019-05-04 18:28:09 +02:00
Usually we think about a knot as an image of an embedding: $ K = \varphi ( S ^ 1 ) $ .
2019-06-03 04:22:10 +02:00
2019-05-28 00:13:20 +02:00
\begin { example}
2019-05-29 20:16:36 +02:00
\begin { itemize}
\item
Knots:
2019-06-03 04:22:10 +02:00
\includegraphics [width=0.08\textwidth] { unknot.png} (unknot),
\includegraphics [width=0.08\textwidth] { trefoil.png} (trefoil).
2019-05-29 20:16:36 +02:00
\item
Not knots:
\includegraphics [width=0.12\textwidth] { not_ injective_ knot.png}
(it is not an injection),
\includegraphics [width=0.08\textwidth] { not_ smooth_ knot.png}
(it is not smooth).
\end { itemize}
2019-05-28 00:13:20 +02:00
\end { example}
2019-05-04 18:28:09 +02:00
\begin { definition}
2019-05-28 00:13:20 +02:00
%\hfill\\
2019-05-04 18:28:09 +02:00
Two knots $ K _ 0 = \varphi _ 0 ( S ^ 1 ) $ , $ K _ 1 = \varphi _ 1 ( S ^ 1 ) $ are equivalent if the embeddings $ \varphi _ 0 $ and $ \varphi _ 1 $ are isotopic, that is there exists a continues function
\begin { align*}
& \Phi : S^ 1 \times [0, 1] \hookrightarrow S^ 3 \\
& \Phi (x, t) = \Phi _ t(x)
\end { align*}
such that $ \Phi _ t $ is an embedding for any $ t \in [ 0 , 1 ] $ , $ \Phi _ 0 = \varphi _ 0 $ and
2019-05-28 00:13:20 +02:00
$ \Phi _ 1 = \varphi _ 1 $ .
\end { definition}
\begin { theorem}
2019-05-29 20:16:36 +02:00
Two knots $ K _ 0 $ and $ K _ 1 $ are isotopic if and only if they are ambient isotopic, i.e. there exists a family of self-diffeomorphisms $ \Psi = \{ \psi _ t: t \in [ 0 , 1 ] \} $ such that:
2019-05-04 18:28:09 +02:00
\begin { align*}
2019-05-29 20:16:36 +02:00
& \psi (t) = \psi _ t \text { is continius on $ t \in [ 0 , 1 ] $ } \\
& \psi _ t: S^ 3 \hookrightarrow S^ 3,\\
2019-05-28 00:13:20 +02:00
& \psi _ 0 = id ,\\
& \psi _ 1(K_ 0) = K_ 1.
2019-05-04 18:28:09 +02:00
\end { align*}
2019-05-28 00:13:20 +02:00
\end { theorem}
2019-05-04 18:28:09 +02:00
\begin { definition}
A knot is trivial (unknot) if it is equivalent to an embedding $ \varphi ( t ) = ( \cos t, \sin t, 0 ) $ , where $ t \in [ 0 , 2 \pi ] $ is a parametrisation of $ S ^ 1 $ .
\end { definition}
\begin { definition}
2019-05-29 20:16:36 +02:00
A link with k - components is a (smooth) embedding of $ \overbrace { S ^ 1 \sqcup \ldots \sqcup S ^ 1 } ^ k $ in $ S ^ 3 $
2019-05-04 18:28:09 +02:00
\end { definition}
\begin { example}
2019-05-28 00:13:20 +02:00
Links:
\begin { itemize}
\item
a trivial link with $ 3 $ components:
2019-05-29 15:54:14 +02:00
\includegraphics [width=0.2\textwidth] { 3unknots.png} ,
2019-05-28 00:13:20 +02:00
\item
a hopf link: \includegraphics [width=0.13\textwidth] { Hopf.png} ,
\item
a Whitehead link:
\includegraphics [width=0.13\textwidth] { WhiteheadLink.png} ,
\item
2019-05-29 15:54:14 +02:00
Borromean link:
2019-05-28 00:13:20 +02:00
\includegraphics [width=0.1\textwidth] { BorromeanRings.png} ,
\end { itemize}
2019-05-04 18:28:09 +02:00
\end { example}
2019-05-29 20:16:36 +02:00
%
%
%
2019-05-04 18:28:09 +02:00
\begin { definition}
2019-05-31 20:33:27 +02:00
A link diagram $ D _ { \pi } $ is a picture over projection $ \pi $ of a link $ L $ in $ \mathbb { R } ^ 3 $ ($ S ^ 3 $ ) to $ \mathbb { R } ^ 2 $ ($ S ^ 2 $ ) such that:
2019-05-29 20:16:36 +02:00
\begin { enumerate} [label={ (\arabic * )} ]
2019-05-28 00:13:20 +02:00
\item
2019-05-29 20:16:36 +02:00
$ { D _ { \pi } } _ { \big |L } $ is non degenerate: \includegraphics [width=0.05\textwidth] { LinkDiagram1.png} ,
2019-05-31 20:33:27 +02:00
\item the double points are not degenerate: \includegraphics [width=0.03\textwidth] { LinkDiagram2.png} ,
2019-05-29 20:16:36 +02:00
\item there are no triple point: \includegraphics [width=0.05\textwidth] { LinkDiagram3.png} .
2019-05-04 18:28:09 +02:00
\end { enumerate}
\end { definition}
2019-05-31 20:33:27 +02:00
\noindent
2019-05-04 18:28:09 +02:00
There are under- and overcrossings (tunnels and bridges) on a link diagrams with an obvious meaning.\\
Every link admits a link diagram.
2019-05-31 20:33:27 +02:00
\\
Let $ D $ be a diagram of an oriented link (to each component of a link we add an arrow in the diagram).\\
We can distinguish two types of crossings: right-handed
$ \left ( \PICorientpluscross \right ) $ , called a positive crossing, and left-handed $ \left ( \PICorientminuscross \right ) $ , called a negative crossing.
2019-05-04 18:28:09 +02:00
2019-06-03 04:22:10 +02:00
\subsection { Reidemeister moves}
2019-05-31 20:33:27 +02:00
A Reidemeister move is one of the three types of operation on a link diagram as shown below:
\begin { enumerate} [label=\Roman * ]
\item \hfill \\
\includegraphics [width=0.6\textwidth] { rm1.png} ,
\item \hfill \\ \includegraphics [width=0.6\textwidth] { rm2.png} ,
\item \hfill \\ \includegraphics [width=0.4\textwidth] { rm3.png} .
\end { enumerate}
\begin { theorem} [Reidemeister, 1927 ]
Two diagrams of the same link can be
deformed into each other by a finite sequence of Reidemeister moves (and isotopy of the plane).
\end { theorem}
2019-05-04 18:28:09 +02:00
%
%
%
2019-05-31 20:33:27 +02:00
%The number of Reidemeister Moves Needed for Unknotting
%Joel Hass, Jeffrey C. Lagarias
%(Submitted on 2 Jul 1998)
2019-06-02 17:27:46 +02:00
% Piotr Sumata, praca magisterska
% proof - transversality theorem (Thom)
%Singularities of Differentiable Maps
%Authors: Arnold, V.I., Varchenko, Alexander, Gusein-Zade, S.M.
2019-06-03 04:22:10 +02:00
\subsection { Seifert surface}
2019-05-31 20:33:27 +02:00
\noindent
Let $ D $ be an oriented diagram of a link $ L $ . We change the diagram by smoothing each crossing:
\begin { align*}
\PICorientpluscross \mapsto \PICorientLRsplit \\
\PICorientminuscross \mapsto \PICorientLRsplit
\end { align*}
We smooth all the crossings, so we get a disjoint union of circles on the plane. Each circle bounds a disks in $ \mathbb { R } ^ 3 $ (we choose disks that don't intersect). For each smoothed crossing we add a twisted band: right-handed for a positive and left-handed for a negative one. We get an orientable surface $ \Sigma $ such that $ \partial \Sigma = L $ .\\
2019-05-04 18:28:09 +02:00
\begin { figure} [H]
2019-05-31 20:33:27 +02:00
\fontsize { 15} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
2019-06-02 17:27:46 +02:00
\resizebox { 0.8\textwidth } { !} { \input { images/seifert_ alg.pdf_ tex} }
2019-05-31 20:33:27 +02:00
\caption { Constructing a Seifert surface.}
2019-06-02 17:27:46 +02:00
\label { fig:SeifertAlg}
2019-05-31 20:33:27 +02:00
}
2019-05-04 18:28:09 +02:00
\end { figure}
2019-05-31 20:33:27 +02:00
2019-06-02 17:27:46 +02:00
\noindent
Note: in general the obtained surface doesn't need to be connected, but by taking connected sum of all components we can easily get a connected surface (i.e. we take two disconnected components and cut a disk in each of them: $ D _ 1 $ and $ D _ 2 $ ; now we glue both components on the boundaries: $ \partial D _ 1 $ and $ \partial D _ 2 $ .
2019-05-31 20:33:27 +02:00
2019-06-02 17:27:46 +02:00
\begin { figure} [H]
\begin { center}
2019-06-03 04:22:10 +02:00
\includegraphics [width=0.4\textwidth] { seifert_ connect.png}
2019-06-02 17:27:46 +02:00
\end { center}
\caption { Connecting two surfaces.}
\label { fig:SeifertConnect}
\end { figure}
\begin { theorem} [Seifert]
Every link in $ S ^ 3 $ bounds a surface $ \Sigma $ that is compact, connected and orientable. Such a surface is called a Seifert surface.
\end { theorem}
%
\begin { figure} [H]
\fontsize { 15} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.8\textwidth } { !} { \input { images/torus_ 1_ 2_ 3.pdf_ tex} }
\caption { Genus of an orientable surface.}
\label { fig:genera}
}
\end { figure}
%
%
\begin { definition}
The three genus $ g _ 3 ( K ) $ ($ g ( K ) $ ) of a knot $ K $ is the minimal genus of a Seifert surface $ \Sigma $ for $ K $ .
\end { definition}
\begin { corollary}
A knot $ K $ is trivial if and only $ g _ 3 ( K ) = 0 $ .
\end { corollary}
\noindent
Remark: there are knots that admit non isotopic Seifert surfaces of minimal genus (András Juhász, 2008).
\begin { definition}
Suppose $ \alpha $ and $ \beta $ are two simple closed curves in $ \mathbb { R } ^ 3 $ .
On a diagram $ L $ consider all crossings between $ \alpha $ and $ \beta $ . Let $ N _ + $ be the number of positive crossings, $ N _ - $ - negative. Then the linking number: $ lk ( \alpha , \beta ) = \frac { 1 } { 2 } ( N _ + - N _ - ) $ .
\end { definition}
\hfill
\\
2019-06-03 04:22:10 +02:00
Let $ \alpha $ and $ \beta $ be two disjoint simple cross curves in $ S ^ 3 $ .
Let $ \nu ( \beta ) $ be a tubular neighbourhood of $ \beta $ . The linking number can be interpreted via first homology group, where $ lk ( \alpha , \beta ) $ is equal to evaluation of $ \alpha $ as element of first homology group of the complement of $ \beta $ :
2019-06-02 17:27:46 +02:00
\[
\alpha \in H_ 1(S^ 3 \setminus \nu (\beta ), \mathbb { Z} ) \cong \mathbb { Z} .\]
2019-06-03 04:22:10 +02:00
2019-06-02 17:27:46 +02:00
\begin { example}
2019-06-03 04:22:10 +02:00
\begin { itemize}
2019-06-02 17:27:46 +02:00
\item
2019-06-03 04:22:10 +02:00
Hopf link
2019-06-02 17:27:46 +02:00
\begin { figure} [H]
\fontsize { 20} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.4\textwidth } { !} { \input { images/linking_ hopf.pdf_ tex} }
}
\end { figure}
\item
2019-06-03 04:22:10 +02:00
$ T ( 6 , 2 ) $ link
2019-06-02 17:27:46 +02:00
\begin { figure} [H]
\fontsize { 20} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.4\textwidth } { !} { \input { images/linking_ torus_ 6_ 2.pdf_ tex} }
}
\end { figure}
\end { itemize}
\end { example}
2019-06-03 04:22:10 +02:00
\subsection { Seifert matrix}
Let $ L $ be a link and $ \Sigma $ be an oriented Seifert surface for $ L $ . Choose a basis for $ H _ 1 ( \Sigma , \mathbb { Z } ) $ consisting of simple closed $ \alpha _ 1 , \dots , \alpha _ n $ .
Let $ \alpha _ 1 ^ + , \dots \alpha _ n ^ + $ be copies of $ \alpha _ i $ lifted up off the surface (push up along a vector field normal to $ \Sigma $ ). Note that elements $ \alpha _ i $ are contained in the Seifert surface while all $ \alpha _ i ^ + $ are don't intersect the surface.
Let $ lk ( \alpha _ i, \alpha _ j ^ + ) = \{ a _ { ij } \} $ . Then the matrix $ S = \{ a _ { ij } \} _ { i, j = 1 } ^ n $ is called a Seifert matrix for $ L $ . Note that by choosing a different basis we get a different matrix.
\begin { figure} [H]
\fontsize { 20} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.8\textwidth } { !} { \input { images/seifert_ matrix.pdf_ tex} }
}
\end { figure}
2019-06-02 17:27:46 +02:00
\begin { theorem}
The Seifert matrices $ S _ 1 $ and $ S _ 2 $ for the same link $ L $ are S-equivalent, that is, $ S _ 2 $ can be obtained from $ S _ 1 $ by a sequence of following moves:
\begin { enumerate} [label={ (\arabic * )} ]
2019-06-03 04:22:10 +02:00
2019-06-02 17:27:46 +02:00
\item
2019-06-03 04:22:10 +02:00
$ V \rightarrow AVA ^ T $ , where $ A $ is a matrix with integer coefficients,
2019-06-02 17:27:46 +02:00
\item
2019-06-03 04:22:10 +02:00
2019-06-02 17:27:46 +02:00
$ V \rightarrow
\begin { pmatrix}
\begin { array} { c|c}
2019-06-03 04:22:10 +02:00
V &
\begin { matrix}
\ast & 0 \\
\sdots & \sdots \\
\ast & 0
\end { matrix} \\
\hline
\begin { matrix}
\ast & \dots & \ast \\
0 & \dots & 0
\end { matrix}
&
\begin { matrix}
0 & 0\\
1 & 0
\end { matrix}
2019-06-02 17:27:46 +02:00
\end { array}
2019-06-03 04:22:10 +02:00
\end { pmatrix} \quad $
or
$ \quad
V \rightarrow
\begin { pmatrix}
\begin { array} { c|c}
V &
\begin { matrix}
\ast & 0 \\
\sdots & \sdots \\
\ast & 0
\end { matrix} \\
\hline
\begin { matrix}
\ast & \dots & \ast \\
0 & \dots & 0
\end { matrix}
&
\begin { matrix}
0 & 1\\
0 & 0
\end { matrix}
\end { array}
\end { pmatrix} $
\item
inverse of (2)
\end { enumerate}
\end { theorem}
\section { \hfill \DTMdate { 2019-03-04} }
\begin { theorem}
For any knot $ K \subset S ^ 3 $ there exists a connected, compact and orientable surface $ \Sigma ( K ) $ such that $ \partial \Sigma ( K ) = K $
\end { theorem}
\begin { proof} ("joke")\\
Let $ K \in S ^ 3 $ be a knot and $ N = \nu ( K ) $ be its tubular neighbourhood. Because $ K $ and $ N $ are homotopy equivalent, we get:
\begin { align*}
H^ 1(S^ 3 \setminus N ) \cong H^ 1(S^ 3 \setminus K).
\end { align*}
Let us consider a long exact sequence of cohomology of a pair $ ( S ^ 3 , S ^ 3 \setminus N ) $ with integer coefficients:
\begin { center}
\begin { tikzcd}
[
column sep=0cm, fill=none,
row sep=small,
ar symbol/.style =%
{ draw=none,"\textstyle #1" description,sloped} ,
isomorphic/.style = { ar symbol={ \cong } } ,
]
& \mathbb { Z}
2019-06-02 17:27:46 +02:00
\\
2019-06-03 04:22:10 +02:00
& H^ 0(S^ 3) \ar [u,isomorphic] \to
& H^ 0(S^ 3 \setminus N) \to
\\
\to H^ 1(S^ 3, S^ 3 \setminus N) \to
& H^ 1(S^ 3) \to
& H^ 1(S^ 3\setminus N) \to
\\
& 0 \ar [u,isomorphic] &
\\
\to H^ 2(S^ 3, S^ 3 \setminus N) \to
& H^ 2(S^ 3) \ar [u,isomorphic] \to
& H^ 2(S^ 3\setminus N) \to
\\
\to H^ 3(S^ 3, S^ 3\setminus N)\to
& H^ 3(S) \to
& 0
\\
& \mathbb { Z} \ar [u,isomorphic] & \\
\end { tikzcd}
\end { center}
2019-06-02 17:27:46 +02:00
\[
2019-06-03 04:22:10 +02:00
H^ * (S^ 3, S^ 3 \setminus N) \cong H^ * (N, \partial N)
2019-06-02 17:27:46 +02:00
\]
2019-06-03 04:22:10 +02:00
\\
??????????????
\\
2019-06-02 17:27:46 +02:00
2019-06-03 04:22:10 +02:00
\end { proof}
2019-06-02 17:27:46 +02:00
2019-06-03 04:22:10 +02:00
\begin { definition}
Let $ S $ be a Seifert matrix for a knot $ K $ . The Alexander polynomial $ \Delta _ K ( t ) $ is a Laurent polynomial:
\[
\Delta _ K(t) := \det (tS - S^ T) \in
\mathbb { Z} [t, t^ { -1} ] \cong \mathbb { Z} [\mathbb { Z} ]
\]
\end { definition}
\begin { theorem}
$ \Delta _ K ( t ) $ is well defined up to multiplication by $ \pm t ^ k $ , for $ k \in \mathbb { Z } $ .
2019-06-02 17:27:46 +02:00
\end { theorem}
2019-06-03 04:22:10 +02:00
\begin { proof}
We need to show that $ \Delta _ K ( t ) $ doesn't depend on $ S $ -equivalence relation.
\begin { enumerate} [label={ (\arabic * )} ]
\item Suppose $ S \prime = CSC ^ T $ , $ C \in \Gl ( n, \mathbb { Z } ) $ (matrices invertible over $ \mathbb { Z } $ ). Then $ \det C = 1 $ and:
\begin { align*}
& \det (tS\prime - S\prime ^ T) =
\det (tCSC^ T - (CSC^ T)^ T) =\\
& \det (tCSC^ T - CS^ TC^ T) =
\det C(tS - S^ T)C^ T =
\det (tS - S^ T)
\end { align*}
\item
Let \\
$ A : = t
\begin { pmatrix}
\begin { array} { c|c}
S &
\begin { matrix}
\ast & 0 \\
\sdots & \sdots \\
\ast & 0
\end { matrix} \\
\hline
\begin { matrix}
\ast & \dots & \ast \\
0 & \dots & 0
\end { matrix}
&
\begin { matrix}
0 & 0\\
1 & 0
\end { matrix}
\end { array}
\end { pmatrix}
-
\begin { pmatrix}
\begin { array} { c|c}
S^ T &
\begin { matrix}
\ast & 0 \\
\sdots & \sdots \\
\ast & 0
\end { matrix} \\
\hline
\begin { matrix}
\ast & \dots & \ast \\
0 & \dots & 0
\end { matrix}
&
\begin { matrix}
0 & 1\\
0 & 0
\end { matrix}
\end { array}
\end { pmatrix}
=
\begin { pmatrix}
\begin { array} { c|c}
tS - S^ T &
\begin { matrix}
\ast & 0 \\
\sdots & \sdots \\
\ast & 0
\end { matrix} \\
\hline
\begin { matrix}
\ast & \dots & \ast \\
0 & \dots & 0
\end { matrix}
&
\begin { matrix}
0 & -1\\
t & 0
\end { matrix}
\end { array}
\end { pmatrix}
$
\\
\\
Using the Laplace expansion we get $ \det A = \pm t \det ( tS - S ^ T ) $ .
\end { enumerate}
\end { proof}
%
%
%
\begin { example}
If $ K $ is a trefoil then we can take
$ S = \begin { pmatrix }
-1 & -1 \\
0 & -1
\end { pmatrix} $ .
\[
\Delta _ K(t) = \det
\begin { pmatrix}
-t + 1 & -t\\
1 & -t +1
\end { pmatrix}
= (t -1)^ 2 + t = t^ 2 - t +1 \ne 1
\Rightarrow \text { trefoil is not trivial}
\]
\end { example}
\begin { fact}
$ \Delta _ K ( t ) $ is symmetric.
\end { fact}
\begin { proof}
Let $ S $ be an $ n \times n $ matrix.
\begin { align*}
& \Delta _ K(t^ { -1} ) = \det (t^ { -1} S - S^ T) = (-t)^ { -n} \det (tS^ T - S) = \\
& (-t)^ { -n} \det (tS - S^ T) = (-t)^ { -n} \Delta _ K(t)
\end { align*}
If $ K $ is a knot, then $ n $ is necessarily even, and so $ \Delta _ K ( t ^ { - 1 } ) = t ^ { - n } \Delta _ K ( t ) $ .
\end { proof}
\begin { lemma}
\begin { align*}
\frac { 1} { 2} \deg \Delta _ K(t) \leq g_ 3(K),
\text { where } deg (a_ n t^ n + \cdots + a_ 1 t^ l )= k - l.
\end { align*}
\end { lemma}
\begin { proof}
2019-06-03 11:18:24 +02:00
If $ \Sigma $ is a genus $ g $ - Seifert surface for $ K $ then $ H _ 1 ( \Sigma ) = \mathbb { Z } ^ { 2 g } $ , so $ S $ is an $ 2 g \times 2 g $ matrix. Therefore $ \det ( tS - S ^ T ) $ is a polynomial of degree at most $ 2 g $ .
2019-06-03 04:22:10 +02:00
\end { proof}
2019-06-03 11:18:24 +02:00
\begin { example}
There are not trivial knots with Alexander polynomial equal $ 1 $ , for example:
$ \Delta _ { 11 n 34 } \equiv 1 $ .
\end { example}
2019-06-03 04:22:10 +02:00
%removing one disk from surface doesn't change $H_1$ (only $H_2$)
2019-05-28 00:13:20 +02:00
\section { }
2019-05-04 18:28:09 +02:00
\begin { example}
\begin { align*}
2019-05-28 00:13:20 +02:00
& F: \mathbb { C} ^ 2 \rightarrow \mathbb { C} \text { a polynomial} \\
2019-05-04 18:28:09 +02:00
& F(0) = 0
\end { align*}
Fact (Milnor Singular Points of Complex Hypersurfaces):
\end { example}
2019-05-29 15:54:14 +02:00
%\end{comment}
2019-05-28 00:13:20 +02:00
An oriented knot is called negative amphichiral if the mirror image $ m ( K ) $ if $ K $ is equivalent the reverse knot of $ K $ . \\
\begin { example} [Problem]
Prove that if $ K $ is negative amphichiral, then $ K \# K $ in
$ \mathbf { C } $
\end { example}
2019-05-29 15:54:14 +02:00
\section { \hfill \DTMdate { 2019-03-18} }
2019-05-28 00:13:20 +02:00
\begin { definition}
A knot $ K $ is called (smoothly) slice if $ K $ is smoothly concordant to an unknot. \\
A knot $ K $ is smoothly slice if and only if $ K $ bounds a smoothly embedded disk in $ B ^ 4 $ .
\end { definition}
\begin { definition}
Two knots $ K $ and $ K ^ { \prime } $ are called (smoothly) concordant if there exists an annulus $ A $ that is smoothly embedded in $ S ^ 3 \times [ 0 , 1 ] $ such that
$ \partial A = K ^ { \prime } \times \{ 1 \} \; \sqcup \; K \times \{ 0 \} $ .
\end { definition}
Let $ m ( K ) $ denote a mirror image of a knot $ K $ .
\begin { fact}
For any $ K $ , $ K \# m ( K ) $ is slice.
\end { fact}
\begin { fact}
Concordance is an equivalence relation.
\end { fact}
\begin { fact}
If $ K _ 1 \sim { K _ 1 } ^ { \prime } $ and $ K _ 2 \sim { K _ 2 } ^ { \prime } $ , then
$ K _ 1 \# K _ 2 \sim { K _ 1 } ^ { \prime } \# { K _ 2 } ^ { \prime } $ .
\end { fact}
\begin { fact}
$ K \# m ( K ) \sim $ the unknot.
\end { fact}
\noindent
Let $ \mathscr { C } $ denote all equivalent classes for knots. $ \mathscr { C } $ is a group under taking connected sums, with neutral element (the class defined by) an unknot and inverse element (a class defined by) a mirror image.\\
The figure eight knot is a torsion element in $ \mathscr { C } $ ($ 2 K \sim $ the unknot).\\
\begin { example} [Problem]
Are there in concordance group torsion elements that are not $ 2 $ torsion elements? (open)
\end { example}
\noindent
Remark: $ K \sim K ^ { \prime } \Leftrightarrow K \# - K ^ { \prime } $ is slice.
2019-05-29 20:16:36 +02:00
%
%
2019-05-29 15:54:14 +02:00
\section { \hfill \DTMdate { 2019-04-08} }
2019-05-29 20:16:36 +02:00
%
%
2019-05-28 00:13:20 +02:00
$ X $ is a closed orientable four-manifold. Assume $ \pi _ 1 ( X ) = 0 $ (it is not needed to define the intersection form). In particular $ H _ 1 ( X ) = 0 $ .
$ H _ 2 $ is free (exercise).
\begin { align*}
H_ 2(X, \mathbb { Z} ) \xrightarrow { \text { Poincaré duality} } H^ 2(X, \mathbb { Z} ) \xrightarrow { \text { evaluation} } \Hom (H_ 2(X, \mathbb { Z} ), \mathbb { Z} )
\end { align*}
Intersection form:
$ H _ 2 ( X, \mathbb { Z } ) \times
H_ 2(X, \mathbb { Z} ) \longrightarrow \mathbb { Z} $ - symmetric, non singular.
\\
Let $ A $ and $ B $ be closed, oriented surfaces in $ X $ .
2019-06-03 04:22:10 +02:00
\begin { proposition}
$ A \cdot B $ doesn't depend of choice of $ A $ and $ B $ in their homology classes.
%$A \cdot B$ gives the pairing as ??
\end { proposition}
2019-05-29 15:54:14 +02:00
\section { \hfill \DTMdate { 2019-04-15} }
In other words:\\
Choose a basis $ ( b _ 1 , ..., b _ i ) $ \\
???\\
of $ H _ 2 ( Y, \mathbb { Z } $ , then $ A = ( b _ i, b _ y ) $ \\ ??\\ is a matrix of intersection form:
\begin { align*}
\quot { \mathbb { Z} ^ n} { A\mathbb { Z} ^ n} \cong H_ 1(Y, \mathbb { Z} ).
\end { align*}
In particular $ \mid \det A \mid = \# H _ 1 ( Y, \mathbb { Z } $ .\\
That means - what is happening on boundary is a measure of degeneracy.
2019-06-03 04:22:10 +02:00
2019-05-29 15:54:14 +02:00
\begin { center}
\begin { tikzcd}
[
2019-06-03 04:22:10 +02:00
column sep=tiny,
row sep=small,
ar symbol/.style =%
{ draw=none,"\textstyle #1" description,sloped} ,
isomorphic/.style = { ar symbol={ \cong } } ,
2019-05-29 15:54:14 +02:00
]
2019-06-03 04:22:10 +02:00
H_ 1(Y, \mathbb { Z} ) &
\times \quad H_ 1(Y, \mathbb { Z} )&
\longrightarrow &
\quot { \mathbb { Q} } { \mathbb { Z} }
\text { - a linking form}
2019-05-29 15:54:14 +02:00
\\
2019-06-03 04:22:10 +02:00
\quot { \mathbb { Z} ^ n} { A\mathbb { Z} } \ar [u,isomorphic] &
\quot { \mathbb { Z} ^ n} { A\mathbb { Z} } \ar [u,isomorphic] & \\
2019-05-29 15:54:14 +02:00
\end { tikzcd}
$ ( a, b ) \mapsto aA ^ { - 1 } b ^ T $
\end { center}
2019-06-03 04:22:10 +02:00
2019-05-29 15:54:14 +02:00
The intersection form on a four-manifold determines the linking on the boundary. \\
\noindent
Let $ K \in S ^ 1 $ be a knot, $ \Sigma ( K ) $ its double branched cover. If $ V $ is a Seifert matrix for $ K $ , then
$ H _ 1 ( \Sigma ( K ) , \mathbb { Z } ) \cong \quot { \mathbb { Z } ^ n } { A \mathbb { Z } } $ where
$ A = V \times V ^ T $ , where $ n = \rank V $ .
%\input{ink_diag}
2019-05-29 20:16:36 +02:00
\begin { figure} [H]
2019-05-29 15:54:14 +02:00
\fontsize { 40} { 10} \selectfont
\centering {
\def \svgwidth { \linewidth }
\resizebox { 0.5\textwidth } { !} { \input { images/ball_ 4.pdf_ tex} }
\caption { Pushing the Seifert surface in 4-ball.}
\label { fig:pushSeifert}
}
\end { figure}
\noindent
Let $ X $ be the four-manifold obtained via the double branched cover of $ B ^ 4 $ branched along $ \widetilde { \Sigma } $ .
\begin { fact}
\begin { itemize}
\item $ X $ is a smooth four-manifold,
\item $ H _ 1 ( X, \mathbb { Z } ) = 0 $ ,
\item $ H _ 2 ( X, \mathbb { Z } ) \cong \mathbb { Z } ^ n $
\item The intersection form on $ X $ is $ V + V ^ T $ .
\end { itemize}
\end { fact}
\noindent
Let $ Y = \Sigma ( K ) $ . Then:
\begin { align*}
& H_ 1(Y, \mathbb { Z} ) \times H_ 1(Y, \mathbb { Z} ) \longrightarrow \quot { \mathbb { Q} } { \mathbb { Z} } \\ & (a,b) \mapsto a A^ { -1} b^ { T} ,\qquad
A = V + V^ T\\
& H_ 1(Y, \mathbb { Z} ) \cong \quot { \mathbb { Z} ^ n} { A\mathbb { Z} } \\
& A \longrightarrow BAC^ T \quad \text { Smith normal form}
\end { align*}
???????????????????????\\
In general
\section { \hfill \DTMdate { 2019-05-20} }
2019-05-29 20:16:36 +02:00
Let $ M $ be compact, oriented, connected four-dimensional manifold.\\
2019-05-29 15:54:14 +02:00
??????????????????????????????????\\
If $ H _ 1 ( M, \mathbb { Z } ) = 0 $ then there exists a
bilinear form - the intersection form on $ M $ :
\begin { center}
\begin { tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style = { draw=none,"\textstyle #1" description,sloped} ,
isomorphic/.style = { ar symbol={ \cong } } ,
]
H_ 2(M, \mathbb { Z} )&
\times & H_ 2(M, \mathbb { Z} )
\longrightarrow &
\mathbb { Z}
\\
\ar [u,isomorphic] \mathbb { Z} ^ n & & & \\
\end { tikzcd}
\end { center}
\noindent
Let us consider a specific case: $ M $ has a boundary $ Y = \partial M $ .
\\ ??????\\
Betti number $ b _ 1 ( Y ) = 0 $ , $ H _ 1 ( Y, \mathbb { Z } ) $ is finite. \\
Then: $ H _ 2 ( M, \mathbb { Z } )
\times H_ 2(M, \mathbb { Z} )
\longrightarrow
\mathbb { Z} $ can be degenerate in the sense that
\begin { align*}
H_ 2(M, \mathbb { Z} ) \longrightarrow \Hom (H_ 2(M, \mathbb { Z} ), \mathbb { Z} )\\
(a, b) \mapsto \mathbb { Z} \\
a \mapsto (a, \_ ) H_ 2(M, \mathbb { Z} )
2019-05-29 20:16:36 +02:00
\end { align*}
has coker precisely $ H _ 1 ( Y, \mathbb { Z } ) $ .
\\ ???????????????\\
2019-05-28 00:13:20 +02:00
Let $ K \subset S ^ 3 $ be a knot, \\
$ X = S ^ 3 \setminus K $ - a knot complement, \\
$ \widetilde { X } \xrightarrow { \enspace \rho \enspace } X $ - an infinite cyclic cover (universal abelian cover).
\begin { align*}
\pi _ 1(X) \longrightarrow \quot { \pi _ 1(X)} { [\pi _ 1(X), \pi _ 1(X)]} = H_ 1(X, \mathbb { Z} ) \cong \mathbb { Z}
\end { align*}
$ C _ { * } ( \widetilde { X } ) $ has a structure of a $ \mathbb { Z } [ t, t ^ { - 1 } ] \cong \mathbb { Z } [ \mathbb { Z } ] $ module. \\
$ H _ 1 ( \widetilde { X } , \mathbb { Z } [ t, t ^ { - 1 } ] ) $ - Alexander module, \\
\begin { align*}
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \times
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \longrightarrow \quot { \mathbb { Q} } { \mathbb { Z} [t, t^ { -1} ]}
\end { align*}
\begin { fact}
\begin { align*}
2019-05-29 15:54:14 +02:00
& H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \cong
\quot { \mathbb { Z} { [t, t^ { -1} ]} ^ n} { (tV - V^ T)\mathbb { Z} [t, t^ { -1} ]^ n} \; , \\
& \text { where $ V $ is a Seifert matrix.}
2019-05-28 00:13:20 +02:00
\end { align*}
\end { fact}
\begin { fact}
\begin { align*}
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) \times
H_ 1(\widetilde { X} , \mathbb { Z} [t, t^ { -1} ]) & \longrightarrow \quot { \mathbb { Q} } { \mathbb { Z} [t, t^ { -1} ]} \\
(\alpha , \beta ) & \mapsto \alpha ^ { -1} (t -1)(tV - V^ T)^ { -1} \beta
\end { align*}
\end { fact}
\noindent
Note that $ \mathbb { Z } $ is not PID. Therefore we don't have primer decomposition of this moduli. We can simplify this problem by replacing $ \mathbb { Z } $ by $ \mathbb { R } $ . We lose some date by doing this transition.
\begin { align*}
& \xi \in S^ 1 \setminus \{ \pm 1\}
\quad
p_ { \xi } =
(t - \xi )(1 - \xi ^ { -1} ) t^ { -1} \\
& \xi \in \mathbb { R} \setminus \{ \pm 1\}
\quad
q_ { \xi } = (t - \xi )(1 - \xi ^ { -1} ) t^ { -1} \\
& \xi \notin \mathbb { R} \cup S^ 1 \quad
q_ { \xi } = (t - \xi )(t - \overbar { \xi } )(1 - \xi ^ { -1} )(1 - \overbar { \xi } ^ { -1} ) t^ { -2} \\
& \Lambda = \mathbb { R} [t, t^ { -1} ]\\
& \text { Then: } H_ 1(\widetilde { X} , \Lambda ) \cong \bigoplus _ { \substack { \xi \in S^ 1 \setminus \{ \pm 1 \} \\ k\geq 0} }
( \quot { \Lambda } { p_ { \xi } ^ k } )^ { n_ k, \xi }
\oplus
\bigoplus _ { \substack { \xi \notin S^ 1 \\ l\geq 0} }
(\quot { \Lambda } { q_ { \xi } ^ l} )^ { n_ l, \xi }
\end { align*}
We can make this composition orthogonal with respect to the Blanchfield paring.
\vspace { 0.5cm} \\
Historical remark:
\begin { itemize}
\item John Milnor, \textit { On isometries of inner product spaces} , 1969,
\item Walter Neumann, \textit { Invariants of plane curve singularities}
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223– 232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
, 1983,
\item András Némethi, \textit { The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities} , 1995,
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
\item Maciej Borodzik, Stefan Friedl
\textit { The unknotting number and classical invariants II} , 2014.
\end { itemize}
\vspace { 0.5cm}
Let $ p = p _ { \xi } $ , $ k \geq 0 $ .
\begin { align*}
\quot { \Lambda } { p^ k \Lambda } \times
\quot { \Lambda } { p^ k \Lambda } & \longrightarrow \quot { \mathbb { Q} (t)} { \Lambda } \\
(1, 1) & \mapsto \kappa \\
\text { Now: } (p^ k \cdot 1, 1) & \mapsto 0\\
p^ k \kappa = 0 & \in \quot { \mathbb { Q} (t)} { \Lambda } \\
\text { therfore } p^ k \kappa & \in \Lambda \\
\text { we have } (1, 1) & \mapsto \frac { h} { p^ k} \\
\end { align*}
$ h $ is not uniquely defined: $ h \rightarrow h + g p ^ k $ doesn't affect paring. \\
Let $ h = p ^ k \kappa $ .
\begin { example}
\begin { align*}
\phi _ 0 ((1, 1))=\frac { +1} { p} \\
\phi _ 1 ((1, 1)) = \frac { -1} { p}
\end { align*}
$ \phi _ 0 $ and $ \phi _ 1 $ are not isomorphic.
\end { example}
\begin { proof}
Let $ \Phi :
\quot { \Lambda } { p^ k \Lambda } \longrightarrow
\quot { \Lambda } { p^ k \Lambda } $
be an isomorphism. \\
Let: $ \Phi ( 1 ) = g \in \lambda $
\begin { align*}
\quot { \Lambda } { p^ k \Lambda }
\xrightarrow { \enspace \Phi \enspace } &
\quot { \Lambda } { p^ k \Lambda } \\
\phi _ 0((1, 1)) = \frac { 1} { p^ k} \qquad & \qquad
\phi _ 1((g, g)) = \frac { 1} { p^ k} \quad \text { ($ \Phi $ is an isometry).}
\end { align*}
Suppose for the paring $ \phi _ 1 ( ( g, g ) ) = \frac { 1 } { p ^ k } $ we have $ \phi _ 1 ( ( 1 , 1 ) ) = \frac { - 1 } { p ^ k } $ . Then:
\begin { align*}
\frac { -g\overbar { g} } { p^ k} = \frac { 1} { p^ k} & \in \quot { \mathbb { Q} (t)} { \Lambda } \\
\frac { -g\overbar { g} } { p^ k} - \frac { 1} { p^ k} & \in \Lambda \\
-g\overbar { g} & \equiv 1\pmod { p} \text { in } \Lambda \\
-g\overbar { g} - 1 & = p^ k \omega \text { for some } \omega \in \Lambda \\
\text { evalueting at $ \xi $ : } \\
\overbrace { -g(\xi )g(\xi ^ { -1} )} ^ { >0} - 1 = 0 \quad \contradiction
\end { align*}
\end { proof}
????????????????????\\
\begin { align*}
g & = \sum { g_ i t^ i} \\
\overbar { g} & = \sum { g_ i t^ { -i} } \\
\overbar { g} (\xi ) & = \sum g_ i \xi ^ i \quad \xi \in S^ 1\\
\overbar { g} (\xi ) & =\overbar { g(\xi )}
\end { align*}
Suppose $ g = ( t - \xi ) ^ { \alpha } g ^ { \prime } $ . Then $ ( t - \xi ) ^ { k - \alpha } $ goes to $ 0 $ in $ \quot { \Lambda } { p ^ k \Lambda } $ .
\begin { theorem}
Every sesquilinear non-degenerate pairing
\begin { align*}
\quot { \Lambda } { p^ k} \times \quot { \Lambda } { p}
\longleftrightarrow \frac { h} { p^ k}
\end { align*}
is isomorphic either to the pairing wit $ h = 1 $ or to the paring with $ h = - 1 $ depending on sign of $ h ( \xi ) $ (which is a real number).
\end { theorem}
\begin { proof}
There are two steps of the proof:
\begin { enumerate}
\item
Reduce to the case when $ h $ has a constant sign on $ S ^ 1 $ .
\item
Prove in the case, when $ h $ has a constant sign on $ S ^ 1 $ .
\end { enumerate}
\begin { lemma}
If $ p $ is a symmetric polynomial such that$ p ( \eta ) \geq 0 $ for all $ \eta \in S ^ 1 $ , then $ p $ can be written as a product $ p = g \overbar { g } $ for some polynomial $ g $ .
\end { lemma}
\begin { proof} [Sketch of proof]
Induction over $ \deg p $ .\\
Let $ \zeta \notin S ^ 1 $ be a root of $ p $ , $ p \in \mathbb { R } [ t, t ^ { - 1 } ] $ . Assume $ \zeta \notin \mathbb { R } $ . We know that
\begin { align*}
(t - \zeta ) \mid p,\\
(t - \overbar { \zeta } ) \mid p,\\
(t^ { -1} - \zeta ) \mid p,\\
(t^ { -1} - \overbar { \zeta } ) \mid p,\\
\end { align*}
therefore:
\begin { align*}
p^ { \prime } = \frac { p} { (t - \zeta )(t - \overbar { \zeta } )(t^ { -1} - \zeta )(t^ { -1} - \overbar { \zeta } )} \\
p^ { \prime } = g^ { \prime } \overbar { g} \\
\text { we set } g = g^ { \prime } (t - \zeta )(t - \overbar { \zeta } \\
p = g \overbar { g}
\end { align*}
Suppose $ \zeta \in S ^ 1 $ . Then $ ( t - \zeta ) ^ 2 \mid p $ (at least - otherwise it would change sign).
\begin { align*}
p^ { \prime } & = \frac { p} { (t - \zeta )^ 2(t^ { -1} - \zeta )^ 2} \\
g & = (t - \zeta )(t^ { -1} - \zeta ) g^ { \prime } \quad \text { etc.} \\
(1, 1) \mapsto \frac { h} { p^ k} = \frac { g\overbar { g} h} { p^ k} \quad \text { isometry whenever $ g $ is coprime with $ p $ .}
\end { align*}
\end { proof}
\begin { lemma} \label { L:coprime polynomials}
Suppose $ A $ and $ B $ are two symmetric polynomials that are coprime and that $ \forall z \in S ^ 1 $ either $ A ( z ) > 0 $ or $ B ( z ) > 0 $ . Then there exist
symmetric polynomials $ P $ , $ Q $ such that
$ P ( z ) , Q ( z ) > 0 $ for $ z \in S ^ 1 $ and $ PA + QB \equiv 1 $ .
\end { lemma}
\begin { proof} [Idea of proof]
For any $ z $ find an interval $ ( a _ z, b _ z ) $ such that if $ P ( z ) \in ( a _ z, b _ z ) $ and $ P ( z ) A ( z ) + Q ( z ) B ( z ) = 1 $ , then $ Q ( z ) > 0 $ , $ x ( z ) = \frac { az + bz } { i } $ is a continues function on $ S ^ 1 $ approximating $ z $ by a polynomial .
\\ ??????????????????????????\\
\begin { align*}
(1, 1) \mapsto \frac { h} { p^ k} \mapsto \frac { g\overbar { g} h} { p^ k} \\
g\overbar { g} h + p^ k\omega = 1
\end { align*}
Apply Lemma \ref { L:coprime polynomials} for $ A = h $ , $ B = p ^ { 2 k } $ . Then, if the assumptions are satisfied,
\begin { align*}
Ph + Qp^ { 2k} = 1\\
p>0 \Rightarrow p = g \overbar { g} \\
p = (t - \xi )(t - \overbar { \xi } )t^ { -1} \\
\text { so } p \geq 0 \text { on } S^ 1\\
p(t) = 0 \Leftrightarrow
t = \xi or t = \overbar { \xi } \\
h(\xi ) > 0\\
h(\overbar { \xi } )>0\\
g\overbar { g} h + Qp^ { 2k} = 1\\
g\overbar { g} h \equiv 1 \mod { p^ { 2k} } \\
g\overbar { g} \equiv 1 \mod { p^ k}
\end { align*}
???????????????????????????????\\
2019-05-29 15:54:14 +02:00
If $ P $ has no roots on $ S ^ 1 $ then $ B ( z ) > 0 $ for all $ z $ , so the assumptions of Lemma \ref { L:coprime polynomials} are satisfied no matter what $ A $ is.
2019-05-28 00:13:20 +02:00
\end { proof}
?????????????????\\
\begin { align*}
(\quot { \Lambda } { p_ { \xi } ^ k} \times
\quot { \Lambda } { p_ { \xi } ^ k} ) & \longrightarrow
\frac { \epsilon } { p_ { \xi } ^ k} , \quad \xi \in S^ 1 \setminus \{ \pm 1\} \\
(\quot { \Lambda } { q_ { \xi } ^ k} \times
\quot { \Lambda } { q_ { \xi } ^ k} ) & \longrightarrow
\frac { 1} { q_ { \xi } ^ k} , \quad \xi \notin S^ 1\\
\end { align*}
??????????????????? 1 ?? epsilon?\\
\begin { theorem} (Matumoto, Conway-Borodzik-Politarczyk)
Let $ K $ be a knot,
\begin { align*}
H_ 1(\widetilde { X} , \Lambda ) \times
H_ 1(\widetilde { X} , \Lambda )
= \bigoplus _ { \substack { k, \xi , \epsilon \\ \xi in S^ 1} }
(\quot { \Lambda } { p_ { \xi } ^ k} , \epsilon )^ { n_ k, \xi , \epsilon } \oplus \bigoplus _ { k, \eta }
(\quot { \Lambda } { p_ { \xi } ^ k} )^ { m_ k}
\end { align*}
\begin { align*}
\text { Let } \delta _ { \sigma } (\xi ) = \lim _ { \varepsilon \rightarrow 0^ { +} }
\sigma (e^ { 2\pi i \varepsilon } \xi )
- \sigma (e^ { -2\pi i \varepsilon } \xi ),\\
\text { then }
\sigma _ j(\xi ) = \sigma (\xi ) - \frac { 1} { 2} \lim _ { \varepsilon \rightarrow 0}
\sigma (e^ { 2\pi i \varepsilon } \xi )
+ \sigma (e^ { -2 \pi i \varepsilon } \xi )
\end { align*}
The jump at $ \xi $ is equal to
$ 2 \sum \limits _ { k _ i \text { odd } } \epsilon _ i $ . The peak of the signature function is equal to $ \sum \limits _ { k _ i \text { even } } \epsilon _ i $ .
%$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$
\end { theorem}
\end { proof}
2019-05-29 15:54:14 +02:00
\section { \hfill \DTMdate { 2019-05-27} }
2019-05-28 00:13:20 +02:00
....
\begin { definition}
A square hermitian matrix $ A $ of size $ n $ .
\end { definition}
2019-05-04 18:28:09 +02:00
2019-05-28 00:13:20 +02:00
field of fractions
2019-05-29 20:16:36 +02:00
\section { balagan}
2019-06-03 04:22:10 +02:00
\begin { comment}
\setlength { \arraycolsep } { 2em}
\newcommand { \lbrce } { \smash { \left .\rule { 0pt} { 25pt} \right \} } }
\newcommand { \rbrce } { \smash { \left \{ \rule { 0pt} { 25pt} \right .} }
\[
\begin { pmatrix}
0 & 0 & 0 \\
\sdots & \sdots \makebox [0pt] [l] { $ \lbrce \left \lceil \frac i 2 \right \rceil $ } & \sdots \\
0 & 0 & \\
\hline
& & 0 \\
& & \makebox [0pt] [r] { $ \left \lfloor \frac i 2 \right \rfloor \rbrce $ } \sdots \\
0 & & 0
\end { pmatrix}
\]
\end { comment}
2019-05-29 15:54:14 +02:00
\end { document}