signature_function/my_signature.sage

346 lines
13 KiB
Python
Raw Permalink Normal View History

2020-05-26 17:23:47 +02:00
#!/usr/bin/python
2020-07-10 02:00:12 +02:00
2020-07-13 21:03:26 +02:00
# TBD: read about Factory Method, variable in docstring, sage documentation
2020-07-10 02:00:12 +02:00
2019-04-12 10:36:34 +02:00
import os
2019-05-12 16:58:40 +02:00
import sys
import itertools as it
2019-04-15 15:37:20 +02:00
import re
2020-09-08 17:28:56 +02:00
# if not os.path.isfile('cable_signature.py'):
# os.system('sage --preparse cable_signature.sage')
# os.system('mv cable_signature.sage.py cable_signature.py')
2020-09-08 17:28:56 +02:00
# from cable_signature import SignatureFunction, TorusCable, SIGNATURE, SIGMA
2020-07-29 13:46:40 +02:00
class Config(object):
def __init__(self):
2019-04-12 10:36:34 +02:00
self.f_results = os.path.join(os.getcwd(), "results.out")
2019-05-12 16:58:40 +02:00
# knot_formula is a schema for knots which signature function
2019-05-12 16:58:40 +02:00
# will be calculated
2020-09-24 02:42:25 +02:00
self.knot_formula = "[[k[0], k[1], k[3]], " + \
"[-k[1], -k[3]], " + \
"[k[2], k[3]], " + \
"[-k[0], -k[2], -k[3]]]"
# self.knot_formula = "[[k[0], k[1], k[4]], [-k[1], -k[3]], \
# [k[2], k[3]], [-k[0], -k[2], -k[4]]]"
#
#
# self.knot_formula = "[[k[3]], [-k[3]], \
# [k[3]], [-k[3]] ]"
2020-08-31 17:31:28 +02:00
# self.knot_formula = "[[k[3], k[2], k[0]], [-k[2], -k[0]], \
# [k[1], k[0]], [-k[3], -k[1], -k[0]]]"
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3], k[4]], \
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
# self.knot_formula = "[[k[0], k[1], k[2]], [k[3]],\
2019-05-12 16:58:40 +02:00
# [-k[0], -k[1], -k[3]], [-k[2]]]"
self.limit = 3
# in rch for large sigma, for 1. checked knot q_1 = 3 + start_shift
2020-08-31 17:31:28 +02:00
self.start_shift = 0
self.verbose = True
2020-09-24 02:42:25 +02:00
# self.verbose = False
2020-08-31 17:31:28 +02:00
self.print_results = True
2020-09-24 02:42:25 +02:00
# self.print_results = False
2020-08-23 13:23:51 +02:00
self.print_calculations_for_large_sigma = True
self.print_calculations_for_large_sigma = False
# is the ratio restriction for values in q_vector taken into account
self.only_slice_candidates = True
self.only_slice_candidates = False
2020-08-23 13:23:51 +02:00
2020-08-31 17:31:28 +02:00
# range for a_i, v = [a_1, a_2, a_3, a_4], for sigma calculations
# upper bound supposed to be ub = k + 1
def get_list_of_ranges(self, ub):
2020-08-31 17:31:28 +02:00
list_of_ranges = [
# all characters a_1, a_2, a_3, a_4 != 0
it.product(range(1, ub), range(1, ub), range(1, ub), range(1, 2)),
2020-08-31 17:31:28 +02:00
# a_1 == 0, a_2, a_3, a_4 != 0
it.product(range(1), range(1, ub), range(1, ub), range(1, 2)),
2020-08-31 17:31:28 +02:00
# a_2 == 0, a_1, a_3, a_4 != 0
it.product(range(1, ub), range(1), range(1, ub), range(1, 2)),
2020-08-31 17:31:28 +02:00
# a_3 == 0, a_1, a_2, a_4 != 0
it.product(range(1, ub), range(1, ub), range(1), range(1, 2)),
2020-08-31 17:31:28 +02:00
# a_4 == 0, a_1, a_2, a_3 != 0
it.product(range(1, ub), range(1, ub), range(1, 2), range(1)),
2020-08-31 17:31:28 +02:00
# a_1 == 0, a_2 == 0, a_3, a_4 != 0
it.product(range(1), range(1), range(1, ub), range(1, 2)),
2020-08-31 17:31:28 +02:00
# a_1 == 0, a_3 == 0, a_2, a_4 != 0
it.product(range(1), range(1, ub), range(1), range(1, 2)),
2020-08-31 17:31:28 +02:00
# a_1 == 0, a_4 == 0, a_3, a_2 != 0
it.product(range(1), range(1, ub), range(1, 2), range(1)),
2020-08-31 17:31:28 +02:00
# a_2 == 0, a_3 == 0, a_1, a_4 != 0
it.product(range(1, ub), range(1), range(1), range(1, 2)),
2020-08-31 17:31:28 +02:00
# a_2 == 0, a_4 == 0, a_1, a_3 != 0
it.product(range(1, ub), range(1), range(1, 2), range(1)),
2020-08-31 17:31:28 +02:00
# a_3 == 0, a_4 == 0, a_1, a_2 != 0
it.product(range(1, ub), range(1, 2), range(1), range(1)),
]
2020-08-31 17:31:28 +02:00
return list_of_ranges
2020-08-24 22:20:28 +02:00
def main(arg):
try:
2020-08-24 22:20:28 +02:00
limit = int(arg[1])
except IndexError:
2020-08-24 22:20:28 +02:00
limit = None
search_for_large_signature_value(limit=limit)
knots_with_large_sigma = search_for_large_sigma_value(limit=limit)
2020-08-24 22:20:28 +02:00
# search_for_null_signature_value(limit=limit)
def set_parameters(knot_formula, limit, verbose, print_results):
2020-08-24 22:20:28 +02:00
if limit is None:
limit = config.limit
if knot_formula is None:
knot_formula = config.knot_formula
if verbose is None:
2020-09-24 02:42:25 +02:00
verbose = config.verbose
2020-08-31 17:31:28 +02:00
if print_results is None:
print_results = config.print_results
return knot_formula, limit, verbose, print_results
# searching for sigma > 5 + #(v_i != 0) over given knot schema
def search_for_large_sigma_value(knot_formula=None, limit=None,
verbose=None, print_results=None):
knot_formula, limit, verbose, print_results = \
set_parameters(knot_formula, limit, verbose, print_results)
2020-08-24 22:20:28 +02:00
k_vector_size = extract_max(knot_formula) + 1
limit = max(limit, k_vector_size)
2020-08-31 17:31:28 +02:00
# number of k_i (q_i) variables to substitute
2020-08-24 22:20:28 +02:00
combinations = it.combinations(range(1, limit + 1), k_vector_size)
P = Primes()
good_knots = []
# iterate over q-vector
for c in combinations:
q = [P.unrank(i + config.start_shift) for i in c]
if config.only_slice_candidates:
2020-09-24 02:42:25 +02:00
ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0]
if not ratio:
if verbose:
print("Ratio-condition does not hold")
continue
cable = TorusCable(knot_formula=knot_formula, q_vector=q)
list_of_ranges = config.get_list_of_ranges(cable.q_order)
2020-09-08 17:28:56 +02:00
if cable.eval_cable_for_large_values(list_of_ranges, SIGMA,
verbose=verbose,
2020-08-31 17:31:28 +02:00
print_results=print_results):
good_knots.append(cable.knot_description)
2020-08-24 22:20:28 +02:00
return good_knots
# searching for signature == 0
def search_for_null_signature_value(knot_formula=None, limit=None,
verbose=None, print_results=None):
knot_formula, limit, verbose, print_results = \
set_parameters(knot_formula, limit, verbose, print_results)
2019-05-12 16:58:40 +02:00
k_vector_size = extract_max(knot_formula) + 1
2020-09-24 02:42:25 +02:00
limit = max(limit, k_vector_size)
2019-05-12 16:58:40 +02:00
combinations = it.combinations_with_replacement(range(1, limit + 1),
k_vector_size)
with open(config.f_results, 'w') as f_results:
2019-05-12 16:58:40 +02:00
for k in combinations:
if config.only_slice_candidates and k_vector_size == 5:
2019-05-12 16:58:40 +02:00
k = get_shifted_combination(k)
cable = TorusCable(knot_formula, k_vector=k)
2020-08-31 17:31:28 +02:00
if is_trivial_combination(cable.knot_sum):
print(cable.knot_sum)
2019-05-12 16:58:40 +02:00
continue
2020-08-31 17:31:28 +02:00
result = cable.eval_cable_for_null_signature(verbose=verbose,
print_results=print_results)
2019-05-12 16:58:40 +02:00
if result is not None:
2020-08-31 17:31:28 +02:00
null_comb, all_comb = result
2019-05-12 16:58:40 +02:00
line = (str(k) + ", " + str(null_comb) + ", " +
str(all_comb) + "\n")
f_results.write(line)
def check_one_cable(cable, sigma_or_sign=None,
verbose=None, print_results=None):
if sigma_or_sign is None:
sigma_or_sign = SIGNATURE
if verbose is None:
verbos = config.verbose
if print_results is None:
print_results = config.print_results
list_of_ranges = config.get_list_of_ranges(cable.q_vector[-1])
return cable.eval_cable_for_large_values(list_of_ranges, sigma_or_sign,
verbose=verbose,
print_results=print_results)
# searching for signature > 5 + #(v_i != 0) over given knot schema
def search_for_large_signature_value(knot_formula=None, limit=None,
verbose=None, print_results=None):
knot_formula, limit, verbose, print_results = \
set_parameters(knot_formula, limit, verbose, print_results)
k_vector_size = extract_max(knot_formula) + 1
combinations = it.combinations(range(1, limit + 1), k_vector_size)
P = Primes()
good_knots = []
# iterate over q-vector
for c in combinations:
q = [P.unrank(i + config.start_shift) for i in c]
if config.only_slice_candidates:
2020-09-24 02:42:25 +02:00
ratio = q[3] > 4 * q[2] and q[2] > 4 * q[1] and q[1] > 4 * q[0]
if not ratio:
if verbose:
print("Ratio-condition does not hold")
continue
cable = TorusCable(knot_formula=knot_formula, q_vector=q)
list_of_ranges = config.get_list_of_ranges(cable.q_vector[-1])
2020-09-08 17:28:56 +02:00
if cable.eval_cable_for_large_values(list_of_ranges, SIGNATURE,
verbose=verbose,
print_results=print_results):
good_knots.append(cable.knot_description)
return good_knots
def get_shifted_combination(combination):
# for now applicable only for schama
# "[[k[0], k[1], k[2]], [k[3], k[4]],
# [-k[0], -k[3], -k[4]], [-k[1], -k[2]]]"
# shift the combination so that the knot can be a candidate for slice
combination = [combination[0], 4 * combination[0] + combination[1],
4 * (4 * combination[0] + combination[1]) + combination[2],
4 * combination[0] + combination[3],
4 * (4 * combination[0] + combination[3]) + combination[4]]
return combination
def extract_max(string):
numbers = re.findall(r'\d+', string)
numbers = map(int, numbers)
return max(numbers)
2019-05-12 16:58:40 +02:00
def is_trivial_combination(knot_sum):
# for now is applicable only for schema that are sums of 4 cables
if len(knot_sum) == 4:
oposit_to_first = [-k for k in knot_sum[0]]
if oposit_to_first in knot_sum:
return True
return False
search_for_null_signature_value.__doc__ = \
"""
This function calculates signature functions for knots constracted
accordinga a schema for a cable sum. The schema is given as an argument
2020-07-29 13:46:40 +02:00
or defined in the class Config.
Results of calculations will be writen to a file and the stdout.
limit is the upper bound for the first value in k_vector,
i.e k[0] value in a cable sum, where q_0 = 2 * k[0] + 1.
2019-05-12 16:58:40 +02:00
(the number of knots that will be constracted depends on limit value).
2020-08-31 17:31:28 +02:00
For each knot/cable sum the function eval_cable_for_null_signature
is called.
eval_cable_for_null_signature calculetes the number of all possible thetas
(characters) and the number of combinations for which signature function
equeles zero. In case the first number is larger than squere of the second,
eval_cable_for_null_signature returns None (i.e. the knot can not be slice).
Data for knots that are candidates for slice knots are saved to a file.
2020-07-10 02:00:12 +02:00
"""
main.__doc__ = \
"""
This function is run if the script was called from the terminal.
It calls another function, search_for_null_signature_value,
to calculate signature functions for a schema
of a cable sum defined in the class Config.
Optionaly a parameter (a limit for k_0 value) can be given.
Thought to be run for time consuming calculations.
"""
extract_max.__doc__ = \
"""
Return:
maximum of absolute values of numbers from given string
2020-07-10 02:00:12 +02:00
Examples:
sage: extract_max("([1, 3], [2], [-1, -2], [-10])")
10
sage: extract_max("3, 55, ewewe, -42, 3300, 50")
3300
2020-07-10 02:00:12 +02:00
"""
if __name__ == '__main__':
global config
config = Config()
if '__file__' in globals():
# skiped in interactive mode as __file__ is not defined
main(sys.argv)
"""
This script calculates signature functions for knots (cable sums).
The script can be run as a sage script from the terminal
or used in interactive mode.
A knot (cable sum) is encoded as a list where each element (also a list)
corresponds to a cable knot, e.g. a list
[[1, 3], [2], [-1, -2], [-3]] encodes
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7).
To calculate the number of characters for which signature function vanish use
the function eval_cable_for_null_signature as shown below.
sage: eval_cable_for_null_signature([[1, 3], [2], [-1, -2], [-3]])
T(2, 3; 2, 7) # T(2, 5) # -T(2, 3; 2, 5) # -T(2, 7)
Zero cases: 1
All cases: 1225
Zero theta combinations:
(0, 0, 0, 0)
sage:
2020-08-31 17:31:28 +02:00
The numbers given to the function eval_cable_for_null_signature are k-values
for each component/cable in a direct sum.
To calculate signature function for a knot and a theta value, use function
2020-08-31 17:31:28 +02:00
get_signature_as_function_of_theta (see help/docstring for details).
About notation:
Cables that we work with follow a schema:
T(2, q_1; 2, q_2; 2, q_4) # -T(2, q_2; 2, q_4) #
# T(2, q_3; 2, q_4) # -T(2, q_1; 2, q_3; 2, q_4)
In knot_formula each k[i] is related with some q_i value, where
q_i = 2*k[i] + 1.
So we can work in the following steps:
1) choose a schema/formula by changing the value of knot_formula
2) set each q_i all or choose range in which q_i should varry
3) choose vector v / theata vector.
"""