Materiały na podstawie ubiegłorocznych
1672
lab/2001_Python.ipynb
Normal file
811
lab/2002_Wczytywanie_i_prezentowanie_danych.ipynb
Normal file
78
lab/2003_Regresja_liniowa.ipynb
Normal file
@ -0,0 +1,78 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "-"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Uczenie maszynowe 2019/2020 – laboratoria\n",
|
||||||
|
"### 23/24 marca 2020\n",
|
||||||
|
"# 3. Regresja liniowa – zadanie"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Zadanie 3"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Część podstawowa (4 punkty)\n",
|
||||||
|
"\n",
|
||||||
|
"Plik `fires_thefts.csv` zawiera rzeczywiste dane zebrane przez *U.S. Commission on Civil Rights*, przedstawiające liczbę pożarów w danej dzielnicy na tysiąc gospodarstw domowych (pierwsza kolumna) oraz liczbę włamań w tej samej dzielnicy na tysiąc mieszkańców (druga kolumna). \n",
|
||||||
|
"\n",
|
||||||
|
"Stwórz model (regresja liniowa) przewidujący liczbę włamań na podstawie liczby pożarów:\n",
|
||||||
|
" * Oblicz parametry $\\theta$ krzywej regresyjnej za pomocą metody gradientu prostego (*gradient descent*). Możesz wybrać wersję iteracyjną lub macierzową algorytmu.\n",
|
||||||
|
" * Wykorzystując uzyskaną krzywą regresyjną przepowiedz liczbę włamań na tysiąc mieszkańców dla dzielnicy, w której występuje średnio 50, 100, 200 pożarów na tysiąc gospodarstw domowych."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Część zaawansowana (2 punkty)\n",
|
||||||
|
"\n",
|
||||||
|
"Dla różnych wartości długości kroku $\\alpha \\in \\{ 0.001, 0.01 , 0.1 \\}$ stwórz wykres, który zilustruje progresję wartości $J(\\theta)$ dla pierwszych 200 króków algorytmu gradientu prostego:\n",
|
||||||
|
" * Oś $x$ wykresu to kolejne kroki algorytmu – od 0 do 200.\n",
|
||||||
|
" * Oś $y$ wykresu to wartosci $J(\\theta)$.\n",
|
||||||
|
" * Wykres powinien skłądać się z trzech krzywych:\n",
|
||||||
|
" 1. dla $\\alpha = 0.001$\n",
|
||||||
|
" 2. dla $\\alpha = 0.01$\n",
|
||||||
|
" 3. dla $\\alpha = 0.1$"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"celltoolbar": "Slideshow",
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.3"
|
||||||
|
},
|
||||||
|
"livereveal": {
|
||||||
|
"start_slideshow_at": "selected",
|
||||||
|
"theme": "amu"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
118
lab/2007_scikit-learn.ipynb
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "-"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Uczenie maszynowe 2019/2020 – laboratoria\n",
|
||||||
|
"### 27/28 kwietnia 2020\n",
|
||||||
|
"# 7. Korzystanie z gotowych implementacji algorytmów na przykładzie pakietu *scikit-learn*"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"[Scikit-learn](https://scikit-learn.org) jest otwartoźródłową biblioteką programistyczną dla języka Python wspomagającą uczenie maszynowe. Zawiera implementacje wielu algorytmów uczenia maszynowego."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Poniżej przykład, jak stworzyć klasyfikator regresji liniowej wielu zmiennych z użyciem `scikit-learn`.\n",
|
||||||
|
"\n",
|
||||||
|
"Na podobnej zasadzie można korzystać z innych modeli dostępnych w bibliotece."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 1,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"#! /usr/bin/env python3\n",
|
||||||
|
"# -*- coding: utf-8 -*-\n",
|
||||||
|
"\n",
|
||||||
|
"# Regresja liniowa wielu zmiennych\n",
|
||||||
|
"\n",
|
||||||
|
"import csv\n",
|
||||||
|
"import numpy\n",
|
||||||
|
"import pandas\n",
|
||||||
|
"import sys\n",
|
||||||
|
"\n",
|
||||||
|
"from sklearn import linear_model # Model regresji liniowej z biblioteki scikit-learn\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"FEATURES = [\n",
|
||||||
|
" 'Powierzchnia w m2',\n",
|
||||||
|
" 'Liczba pokoi',\n",
|
||||||
|
" 'Liczba pięter w budynku',\n",
|
||||||
|
" 'Piętro',\n",
|
||||||
|
" 'Rok budowy',\n",
|
||||||
|
"]\n",
|
||||||
|
"\n",
|
||||||
|
"\n",
|
||||||
|
"def preprocess(data):\n",
|
||||||
|
" \"\"\"Wstępne przetworzenie danych\"\"\"\n",
|
||||||
|
" data = data.replace({'parter': 0, 'poddasze': 0}, regex=True)\n",
|
||||||
|
" data = data.applymap(numpy.nan_to_num) # Zamienia \"NaN\" na liczby\n",
|
||||||
|
" return data\n",
|
||||||
|
"\n",
|
||||||
|
"# Nazwy plików\n",
|
||||||
|
"input_filename = 'flats-test.tsv'\n",
|
||||||
|
"output_filename = 'flats-predicted.tsv'\n",
|
||||||
|
"trainset_filename = 'flats-train.tsv'\n",
|
||||||
|
"\n",
|
||||||
|
"# Wczytanie danych uczących\n",
|
||||||
|
"data = pandas.read_csv(trainset_filename, header=0, sep='\\t')\n",
|
||||||
|
"columns = data.columns[1:] # wszystkie kolumny oprócz pierwszej (\"cena\")\n",
|
||||||
|
"data = data[FEATURES + ['cena']] # wybór cech\n",
|
||||||
|
"data = preprocess(data) # wstępne przetworzenie danych\n",
|
||||||
|
"y = pandas.DataFrame(data['cena'])\n",
|
||||||
|
"x = pandas.DataFrame(data[FEATURES])\n",
|
||||||
|
"model = linear_model.LinearRegression() # definicja modelu\n",
|
||||||
|
"model.fit(x, y) # dopasowanie modelu\n",
|
||||||
|
"\n",
|
||||||
|
"# Wczytanie danych testowych\n",
|
||||||
|
"data = pandas.read_csv(input_filename, header=None, sep='\\t', names=columns)\n",
|
||||||
|
"x = pandas.DataFrame(data[FEATURES]) # wybór cech\n",
|
||||||
|
"x = preprocess(x) # wstępne przetworzenie danych\n",
|
||||||
|
"y = model.predict(x) # przewidywania modelu\n",
|
||||||
|
"\n",
|
||||||
|
"# Zapis wyników do pliku\n",
|
||||||
|
"pandas.DataFrame(y).to_csv(output_filename, index=None, header=None, sep='\\t')"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"celltoolbar": "Slideshow",
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.3"
|
||||||
|
},
|
||||||
|
"livereveal": {
|
||||||
|
"start_slideshow_at": "selected",
|
||||||
|
"theme": "amu"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
13125
lab/2010_Sieci_neuronowe.ipynb
Normal file
60
lab/2011_Wielowarstwowe_sieci_neuronowe.ipynb
Normal file
@ -0,0 +1,60 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Wielowarstwowe sieci neuronowe\n",
|
||||||
|
"\n",
|
||||||
|
"[Keras](https://keras.io/) to zaawansowany pakiet do tworzenia sieci neuronowych w języku Python.\n",
|
||||||
|
"Na komputerach wydziałowych powinien być zainstalowany.\n",
|
||||||
|
"Na własnych komputerach pod Linuxem można go zainstalować poleceniem: `sudo pip install keras`.\n",
|
||||||
|
"\n",
|
||||||
|
"**Uwaga:** pierwsze uruchomienie zazwyczaj trwa jakiś czas, ponieważ pod spodem model kompiluje się jako aplikacja w C++. \n",
|
||||||
|
"\n",
|
||||||
|
"#### 1. Iris dataset\n",
|
||||||
|
"\n",
|
||||||
|
"Korzystając z [oficjalnej dokumentacji](http://keras.io) oraz materiałów szkoleniowych znalezionych w internecie (np. [machinelearningmastery.com](http://machinelearningmastery.com/tutorial-first-neural-network-python-keras/)), zbuduj (co najmniej) dwuwarstwową sieć neuronową do klasyfkacji _Iris dataset_. Opisz stworzony model: architekturę sieci, jej rozmiar, zastosowane funkcje aktywacji, funkcję kosztu, wersję GD, metodę regularyzacji. Podaj wynik ewaluacji na zbiorze testowym.\n",
|
||||||
|
"\n",
|
||||||
|
"#### 2. MNIST\n",
|
||||||
|
"\n",
|
||||||
|
"Uruchom przykład `mnist_mlp.py` z [katalogu oficjalnych przykładów]( https://github.com/fchollet/keras/tree/master/examples) (warto ew. zmienić liczbę epok do 5). Posiłkując się dokumentacją, przeanalizuj kod i opisz:\n",
|
||||||
|
"\n",
|
||||||
|
"* Do jakiej postaci sprowadzane są dane `Y_train` i `Y_test`?\n",
|
||||||
|
"* Przedstaw wzór matematyczny na zastosowaną funkcję błędu.\n",
|
||||||
|
"* Jaka jest architektura sieci neuronowej? Ile ma warstw, jakie są rozmiary macierzy warstw? Czy można uzyskać dostęp do tych wag?\n",
|
||||||
|
"* Jakie funkcje aktywacji użyto? Podaj ich wzory.\n",
|
||||||
|
"* Czym jest `Dropout`? Czemu służy? Jakie znaczenie ma parametr?\n",
|
||||||
|
"\n",
|
||||||
|
"Zmodyfikuj model z przykładu `mnist_mlp.py` i wykonaj:\n",
|
||||||
|
"\n",
|
||||||
|
"* Usuń warstwy `Dropout`, jaki jest efekt?\n",
|
||||||
|
"* Stwórz 6-cio warstwowy model o rozmiarach warstw 2500, 2000, 1500, 1000, 500 oraz 10 bez `Dropout`, użyj wszędzie funkcji aktywacji `tanh` z wyjątkiem ostatniej warstwy, gdzie należy użyć `softmax`. Trenuj model przez 10 epok.\n",
|
||||||
|
"* Dodaj warstwy `Dropout`, porównaj jakość po 10 epokach, krótko opisz wnioski.\n",
|
||||||
|
"* Zamiast `RMSprop` użyj algorytm `Adagrad`, porównaj jakość, krótko opisz wnioski. "
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"hide_input": false,
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.3"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
87
lab/Untitled.ipynb
Normal file
@ -0,0 +1,87 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 19,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"input_list = [34.6, -203.4, 45, 8.2, -12.3, 44.6, 12.7]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"output_list = [x * x for x in input_list if x > 0]"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 21,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[1197.16, 2025, 67.24, 1989.16, 161.29]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(output_list)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"data": {
|
||||||
|
"text/plain": [
|
||||||
|
"67.24"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"output_type": "execute_result"
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"8.2 ** 2"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.3"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
10
lab/data1.csv
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
price,isNew,rooms,floor,location,sqrMetres
|
||||||
|
476118.0,False,3,1,Centrum,78
|
||||||
|
459531.0,False,3,2,Sołacz,62
|
||||||
|
411557.0,False,3,0,Sołacz,15
|
||||||
|
496416.0,False,4,0,Sołacz,14
|
||||||
|
406032.0,False,3,0,Sołacz,15
|
||||||
|
450026.0,False,3,1,Naramowice,80
|
||||||
|
571229.15,False,2,4,Wilda,39
|
||||||
|
325000.0,False,3,1,Grunwald,54
|
||||||
|
268229.0,False,2,1,Grunwald,90
|
|
10
lab/data1.tsv
Normal file
@ -0,0 +1,10 @@
|
|||||||
|
price isNew rooms floor location sqrMetres
|
||||||
|
476118.0 False 3 1 Centrum 78
|
||||||
|
459531.0 False 3 2 Sołacz 62
|
||||||
|
411557.0 False 3 0 Sołacz 15
|
||||||
|
496416.0 False 4 0 Sołacz 14
|
||||||
|
406032.0 False 3 0 Sołacz 15
|
||||||
|
450026.0 False 3 1 Naramowice 80
|
||||||
|
571229.15 False 2 4 Wilda 39
|
||||||
|
325000.0 False 3 1 Grunwald 54
|
||||||
|
268229.0 False 2 1 Grunwald 90
|
|
178
lab/data2.csv
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
1,14.23,1.71,2.43,15.6,127,2.8,3.06,.28,2.29,5.64,1.04,3.92,1065
|
||||||
|
1,13.2,1.78,2.14,11.2,100,2.65,2.76,.26,1.28,4.38,1.05,3.4,1050
|
||||||
|
1,13.16,2.36,2.67,18.6,101,2.8,3.24,.3,2.81,5.68,1.03,3.17,1185
|
||||||
|
1,14.37,1.95,2.5,16.8,113,3.85,3.49,.24,2.18,7.8,.86,3.45,1480
|
||||||
|
1,13.24,2.59,2.87,21,118,2.8,2.69,.39,1.82,4.32,1.04,2.93,735
|
||||||
|
1,14.2,1.76,2.45,15.2,112,3.27,3.39,.34,1.97,6.75,1.05,2.85,1450
|
||||||
|
1,14.39,1.87,2.45,14.6,96,2.5,2.52,.3,1.98,5.25,1.02,3.58,1290
|
||||||
|
1,14.06,2.15,2.61,17.6,121,2.6,2.51,.31,1.25,5.05,1.06,3.58,1295
|
||||||
|
1,14.83,1.64,2.17,14,97,2.8,2.98,.29,1.98,5.2,1.08,2.85,1045
|
||||||
|
1,13.86,1.35,2.27,16,98,2.98,3.15,.22,1.85,7.22,1.01,3.55,1045
|
||||||
|
1,14.1,2.16,2.3,18,105,2.95,3.32,.22,2.38,5.75,1.25,3.17,1510
|
||||||
|
1,14.12,1.48,2.32,16.8,95,2.2,2.43,.26,1.57,5,1.17,2.82,1280
|
||||||
|
1,13.75,1.73,2.41,16,89,2.6,2.76,.29,1.81,5.6,1.15,2.9,1320
|
||||||
|
1,14.75,1.73,2.39,11.4,91,3.1,3.69,.43,2.81,5.4,1.25,2.73,1150
|
||||||
|
1,14.38,1.87,2.38,12,102,3.3,3.64,.29,2.96,7.5,1.2,3,1547
|
||||||
|
1,13.63,1.81,2.7,17.2,112,2.85,2.91,.3,1.46,7.3,1.28,2.88,1310
|
||||||
|
1,14.3,1.92,2.72,20,120,2.8,3.14,.33,1.97,6.2,1.07,2.65,1280
|
||||||
|
1,13.83,1.57,2.62,20,115,2.95,3.4,.4,1.72,6.6,1.13,2.57,1130
|
||||||
|
1,14.19,1.59,2.48,16.5,108,3.3,3.93,.32,1.86,8.7,1.23,2.82,1680
|
||||||
|
1,13.64,3.1,2.56,15.2,116,2.7,3.03,.17,1.66,5.1,.96,3.36,845
|
||||||
|
1,14.06,1.63,2.28,16,126,3,3.17,.24,2.1,5.65,1.09,3.71,780
|
||||||
|
1,12.93,3.8,2.65,18.6,102,2.41,2.41,.25,1.98,4.5,1.03,3.52,770
|
||||||
|
1,13.71,1.86,2.36,16.6,101,2.61,2.88,.27,1.69,3.8,1.11,4,1035
|
||||||
|
1,12.85,1.6,2.52,17.8,95,2.48,2.37,.26,1.46,3.93,1.09,3.63,1015
|
||||||
|
1,13.5,1.81,2.61,20,96,2.53,2.61,.28,1.66,3.52,1.12,3.82,845
|
||||||
|
1,13.05,2.05,3.22,25,124,2.63,2.68,.47,1.92,3.58,1.13,3.2,830
|
||||||
|
1,13.39,1.77,2.62,16.1,93,2.85,2.94,.34,1.45,4.8,.92,3.22,1195
|
||||||
|
1,13.3,1.72,2.14,17,94,2.4,2.19,.27,1.35,3.95,1.02,2.77,1285
|
||||||
|
1,13.87,1.9,2.8,19.4,107,2.95,2.97,.37,1.76,4.5,1.25,3.4,915
|
||||||
|
1,14.02,1.68,2.21,16,96,2.65,2.33,.26,1.98,4.7,1.04,3.59,1035
|
||||||
|
1,13.73,1.5,2.7,22.5,101,3,3.25,.29,2.38,5.7,1.19,2.71,1285
|
||||||
|
1,13.58,1.66,2.36,19.1,106,2.86,3.19,.22,1.95,6.9,1.09,2.88,1515
|
||||||
|
1,13.68,1.83,2.36,17.2,104,2.42,2.69,.42,1.97,3.84,1.23,2.87,990
|
||||||
|
1,13.76,1.53,2.7,19.5,132,2.95,2.74,.5,1.35,5.4,1.25,3,1235
|
||||||
|
1,13.51,1.8,2.65,19,110,2.35,2.53,.29,1.54,4.2,1.1,2.87,1095
|
||||||
|
1,13.48,1.81,2.41,20.5,100,2.7,2.98,.26,1.86,5.1,1.04,3.47,920
|
||||||
|
1,13.28,1.64,2.84,15.5,110,2.6,2.68,.34,1.36,4.6,1.09,2.78,880
|
||||||
|
1,13.05,1.65,2.55,18,98,2.45,2.43,.29,1.44,4.25,1.12,2.51,1105
|
||||||
|
1,13.07,1.5,2.1,15.5,98,2.4,2.64,.28,1.37,3.7,1.18,2.69,1020
|
||||||
|
1,14.22,3.99,2.51,13.2,128,3,3.04,.2,2.08,5.1,.89,3.53,760
|
||||||
|
1,13.56,1.71,2.31,16.2,117,3.15,3.29,.34,2.34,6.13,.95,3.38,795
|
||||||
|
1,13.41,3.84,2.12,18.8,90,2.45,2.68,.27,1.48,4.28,.91,3,1035
|
||||||
|
1,13.88,1.89,2.59,15,101,3.25,3.56,.17,1.7,5.43,.88,3.56,1095
|
||||||
|
1,13.24,3.98,2.29,17.5,103,2.64,2.63,.32,1.66,4.36,.82,3,680
|
||||||
|
1,13.05,1.77,2.1,17,107,3,3,.28,2.03,5.04,.88,3.35,885
|
||||||
|
1,14.21,4.04,2.44,18.9,111,2.85,2.65,.3,1.25,5.24,.87,3.33,1080
|
||||||
|
1,14.38,3.59,2.28,16,102,3.25,3.17,.27,2.19,4.9,1.04,3.44,1065
|
||||||
|
1,13.9,1.68,2.12,16,101,3.1,3.39,.21,2.14,6.1,.91,3.33,985
|
||||||
|
1,14.1,2.02,2.4,18.8,103,2.75,2.92,.32,2.38,6.2,1.07,2.75,1060
|
||||||
|
1,13.94,1.73,2.27,17.4,108,2.88,3.54,.32,2.08,8.90,1.12,3.1,1260
|
||||||
|
1,13.05,1.73,2.04,12.4,92,2.72,3.27,.17,2.91,7.2,1.12,2.91,1150
|
||||||
|
1,13.83,1.65,2.6,17.2,94,2.45,2.99,.22,2.29,5.6,1.24,3.37,1265
|
||||||
|
1,13.82,1.75,2.42,14,111,3.88,3.74,.32,1.87,7.05,1.01,3.26,1190
|
||||||
|
1,13.77,1.9,2.68,17.1,115,3,2.79,.39,1.68,6.3,1.13,2.93,1375
|
||||||
|
1,13.74,1.67,2.25,16.4,118,2.6,2.9,.21,1.62,5.85,.92,3.2,1060
|
||||||
|
1,13.56,1.73,2.46,20.5,116,2.96,2.78,.2,2.45,6.25,.98,3.03,1120
|
||||||
|
1,14.22,1.7,2.3,16.3,118,3.2,3,.26,2.03,6.38,.94,3.31,970
|
||||||
|
1,13.29,1.97,2.68,16.8,102,3,3.23,.31,1.66,6,1.07,2.84,1270
|
||||||
|
1,13.72,1.43,2.5,16.7,108,3.4,3.67,.19,2.04,6.8,.89,2.87,1285
|
||||||
|
2,12.37,.94,1.36,10.6,88,1.98,.57,.28,.42,1.95,1.05,1.82,520
|
||||||
|
2,12.33,1.1,2.28,16,101,2.05,1.09,.63,.41,3.27,1.25,1.67,680
|
||||||
|
2,12.64,1.36,2.02,16.8,100,2.02,1.41,.53,.62,5.75,.98,1.59,450
|
||||||
|
2,13.67,1.25,1.92,18,94,2.1,1.79,.32,.73,3.8,1.23,2.46,630
|
||||||
|
2,12.37,1.13,2.16,19,87,3.5,3.1,.19,1.87,4.45,1.22,2.87,420
|
||||||
|
2,12.17,1.45,2.53,19,104,1.89,1.75,.45,1.03,2.95,1.45,2.23,355
|
||||||
|
2,12.37,1.21,2.56,18.1,98,2.42,2.65,.37,2.08,4.6,1.19,2.3,678
|
||||||
|
2,13.11,1.01,1.7,15,78,2.98,3.18,.26,2.28,5.3,1.12,3.18,502
|
||||||
|
2,12.37,1.17,1.92,19.6,78,2.11,2,.27,1.04,4.68,1.12,3.48,510
|
||||||
|
2,13.34,.94,2.36,17,110,2.53,1.3,.55,.42,3.17,1.02,1.93,750
|
||||||
|
2,12.21,1.19,1.75,16.8,151,1.85,1.28,.14,2.5,2.85,1.28,3.07,718
|
||||||
|
2,12.29,1.61,2.21,20.4,103,1.1,1.02,.37,1.46,3.05,.906,1.82,870
|
||||||
|
2,13.86,1.51,2.67,25,86,2.95,2.86,.21,1.87,3.38,1.36,3.16,410
|
||||||
|
2,13.49,1.66,2.24,24,87,1.88,1.84,.27,1.03,3.74,.98,2.78,472
|
||||||
|
2,12.99,1.67,2.6,30,139,3.3,2.89,.21,1.96,3.35,1.31,3.5,985
|
||||||
|
2,11.96,1.09,2.3,21,101,3.38,2.14,.13,1.65,3.21,.99,3.13,886
|
||||||
|
2,11.66,1.88,1.92,16,97,1.61,1.57,.34,1.15,3.8,1.23,2.14,428
|
||||||
|
2,13.03,.9,1.71,16,86,1.95,2.03,.24,1.46,4.6,1.19,2.48,392
|
||||||
|
2,11.84,2.89,2.23,18,112,1.72,1.32,.43,.95,2.65,.96,2.52,500
|
||||||
|
2,12.33,.99,1.95,14.8,136,1.9,1.85,.35,2.76,3.4,1.06,2.31,750
|
||||||
|
2,12.7,3.87,2.4,23,101,2.83,2.55,.43,1.95,2.57,1.19,3.13,463
|
||||||
|
2,12,.92,2,19,86,2.42,2.26,.3,1.43,2.5,1.38,3.12,278
|
||||||
|
2,12.72,1.81,2.2,18.8,86,2.2,2.53,.26,1.77,3.9,1.16,3.14,714
|
||||||
|
2,12.08,1.13,2.51,24,78,2,1.58,.4,1.4,2.2,1.31,2.72,630
|
||||||
|
2,13.05,3.86,2.32,22.5,85,1.65,1.59,.61,1.62,4.8,.84,2.01,515
|
||||||
|
2,11.84,.89,2.58,18,94,2.2,2.21,.22,2.35,3.05,.79,3.08,520
|
||||||
|
2,12.67,.98,2.24,18,99,2.2,1.94,.3,1.46,2.62,1.23,3.16,450
|
||||||
|
2,12.16,1.61,2.31,22.8,90,1.78,1.69,.43,1.56,2.45,1.33,2.26,495
|
||||||
|
2,11.65,1.67,2.62,26,88,1.92,1.61,.4,1.34,2.6,1.36,3.21,562
|
||||||
|
2,11.64,2.06,2.46,21.6,84,1.95,1.69,.48,1.35,2.8,1,2.75,680
|
||||||
|
2,12.08,1.33,2.3,23.6,70,2.2,1.59,.42,1.38,1.74,1.07,3.21,625
|
||||||
|
2,12.08,1.83,2.32,18.5,81,1.6,1.5,.52,1.64,2.4,1.08,2.27,480
|
||||||
|
2,12,1.51,2.42,22,86,1.45,1.25,.5,1.63,3.6,1.05,2.65,450
|
||||||
|
2,12.69,1.53,2.26,20.7,80,1.38,1.46,.58,1.62,3.05,.96,2.06,495
|
||||||
|
2,12.29,2.83,2.22,18,88,2.45,2.25,.25,1.99,2.15,1.15,3.3,290
|
||||||
|
2,11.62,1.99,2.28,18,98,3.02,2.26,.17,1.35,3.25,1.16,2.96,345
|
||||||
|
2,12.47,1.52,2.2,19,162,2.5,2.27,.32,3.28,2.6,1.16,2.63,937
|
||||||
|
2,11.81,2.12,2.74,21.5,134,1.6,.99,.14,1.56,2.5,.95,2.26,625
|
||||||
|
2,12.29,1.41,1.98,16,85,2.55,2.5,.29,1.77,2.9,1.23,2.74,428
|
||||||
|
2,12.37,1.07,2.1,18.5,88,3.52,3.75,.24,1.95,4.5,1.04,2.77,660
|
||||||
|
2,12.29,3.17,2.21,18,88,2.85,2.99,.45,2.81,2.3,1.42,2.83,406
|
||||||
|
2,12.08,2.08,1.7,17.5,97,2.23,2.17,.26,1.4,3.3,1.27,2.96,710
|
||||||
|
2,12.6,1.34,1.9,18.5,88,1.45,1.36,.29,1.35,2.45,1.04,2.77,562
|
||||||
|
2,12.34,2.45,2.46,21,98,2.56,2.11,.34,1.31,2.8,.8,3.38,438
|
||||||
|
2,11.82,1.72,1.88,19.5,86,2.5,1.64,.37,1.42,2.06,.94,2.44,415
|
||||||
|
2,12.51,1.73,1.98,20.5,85,2.2,1.92,.32,1.48,2.94,1.04,3.57,672
|
||||||
|
2,12.42,2.55,2.27,22,90,1.68,1.84,.66,1.42,2.7,.86,3.3,315
|
||||||
|
2,12.25,1.73,2.12,19,80,1.65,2.03,.37,1.63,3.4,1,3.17,510
|
||||||
|
2,12.72,1.75,2.28,22.5,84,1.38,1.76,.48,1.63,3.3,.88,2.42,488
|
||||||
|
2,12.22,1.29,1.94,19,92,2.36,2.04,.39,2.08,2.7,.86,3.02,312
|
||||||
|
2,11.61,1.35,2.7,20,94,2.74,2.92,.29,2.49,2.65,.96,3.26,680
|
||||||
|
2,11.46,3.74,1.82,19.5,107,3.18,2.58,.24,3.58,2.9,.75,2.81,562
|
||||||
|
2,12.52,2.43,2.17,21,88,2.55,2.27,.26,1.22,2,.9,2.78,325
|
||||||
|
2,11.76,2.68,2.92,20,103,1.75,2.03,.6,1.05,3.8,1.23,2.5,607
|
||||||
|
2,11.41,.74,2.5,21,88,2.48,2.01,.42,1.44,3.08,1.1,2.31,434
|
||||||
|
2,12.08,1.39,2.5,22.5,84,2.56,2.29,.43,1.04,2.9,.93,3.19,385
|
||||||
|
2,11.03,1.51,2.2,21.5,85,2.46,2.17,.52,2.01,1.9,1.71,2.87,407
|
||||||
|
2,11.82,1.47,1.99,20.8,86,1.98,1.6,.3,1.53,1.95,.95,3.33,495
|
||||||
|
2,12.42,1.61,2.19,22.5,108,2,2.09,.34,1.61,2.06,1.06,2.96,345
|
||||||
|
2,12.77,3.43,1.98,16,80,1.63,1.25,.43,.83,3.4,.7,2.12,372
|
||||||
|
2,12,3.43,2,19,87,2,1.64,.37,1.87,1.28,.93,3.05,564
|
||||||
|
2,11.45,2.4,2.42,20,96,2.9,2.79,.32,1.83,3.25,.8,3.39,625
|
||||||
|
2,11.56,2.05,3.23,28.5,119,3.18,5.08,.47,1.87,6,.93,3.69,465
|
||||||
|
2,12.42,4.43,2.73,26.5,102,2.2,2.13,.43,1.71,2.08,.92,3.12,365
|
||||||
|
2,13.05,5.8,2.13,21.5,86,2.62,2.65,.3,2.01,2.6,.73,3.1,380
|
||||||
|
2,11.87,4.31,2.39,21,82,2.86,3.03,.21,2.91,2.8,.75,3.64,380
|
||||||
|
2,12.07,2.16,2.17,21,85,2.6,2.65,.37,1.35,2.76,.86,3.28,378
|
||||||
|
2,12.43,1.53,2.29,21.5,86,2.74,3.15,.39,1.77,3.94,.69,2.84,352
|
||||||
|
2,11.79,2.13,2.78,28.5,92,2.13,2.24,.58,1.76,3,.97,2.44,466
|
||||||
|
2,12.37,1.63,2.3,24.5,88,2.22,2.45,.4,1.9,2.12,.89,2.78,342
|
||||||
|
2,12.04,4.3,2.38,22,80,2.1,1.75,.42,1.35,2.6,.79,2.57,580
|
||||||
|
3,12.86,1.35,2.32,18,122,1.51,1.25,.21,.94,4.1,.76,1.29,630
|
||||||
|
3,12.88,2.99,2.4,20,104,1.3,1.22,.24,.83,5.4,.74,1.42,530
|
||||||
|
3,12.81,2.31,2.4,24,98,1.15,1.09,.27,.83,5.7,.66,1.36,560
|
||||||
|
3,12.7,3.55,2.36,21.5,106,1.7,1.2,.17,.84,5,.78,1.29,600
|
||||||
|
3,12.51,1.24,2.25,17.5,85,2,.58,.6,1.25,5.45,.75,1.51,650
|
||||||
|
3,12.6,2.46,2.2,18.5,94,1.62,.66,.63,.94,7.1,.73,1.58,695
|
||||||
|
3,12.25,4.72,2.54,21,89,1.38,.47,.53,.8,3.85,.75,1.27,720
|
||||||
|
3,12.53,5.51,2.64,25,96,1.79,.6,.63,1.1,5,.82,1.69,515
|
||||||
|
3,13.49,3.59,2.19,19.5,88,1.62,.48,.58,.88,5.7,.81,1.82,580
|
||||||
|
3,12.84,2.96,2.61,24,101,2.32,.6,.53,.81,4.92,.89,2.15,590
|
||||||
|
3,12.93,2.81,2.7,21,96,1.54,.5,.53,.75,4.6,.77,2.31,600
|
||||||
|
3,13.36,2.56,2.35,20,89,1.4,.5,.37,.64,5.6,.7,2.47,780
|
||||||
|
3,13.52,3.17,2.72,23.5,97,1.55,.52,.5,.55,4.35,.89,2.06,520
|
||||||
|
3,13.62,4.95,2.35,20,92,2,.8,.47,1.02,4.4,.91,2.05,550
|
||||||
|
3,12.25,3.88,2.2,18.5,112,1.38,.78,.29,1.14,8.21,.65,2,855
|
||||||
|
3,13.16,3.57,2.15,21,102,1.5,.55,.43,1.3,4,.6,1.68,830
|
||||||
|
3,13.88,5.04,2.23,20,80,.98,.34,.4,.68,4.9,.58,1.33,415
|
||||||
|
3,12.87,4.61,2.48,21.5,86,1.7,.65,.47,.86,7.65,.54,1.86,625
|
||||||
|
3,13.32,3.24,2.38,21.5,92,1.93,.76,.45,1.25,8.42,.55,1.62,650
|
||||||
|
3,13.08,3.9,2.36,21.5,113,1.41,1.39,.34,1.14,9.40,.57,1.33,550
|
||||||
|
3,13.5,3.12,2.62,24,123,1.4,1.57,.22,1.25,8.60,.59,1.3,500
|
||||||
|
3,12.79,2.67,2.48,22,112,1.48,1.36,.24,1.26,10.8,.48,1.47,480
|
||||||
|
3,13.11,1.9,2.75,25.5,116,2.2,1.28,.26,1.56,7.1,.61,1.33,425
|
||||||
|
3,13.23,3.3,2.28,18.5,98,1.8,.83,.61,1.87,10.52,.56,1.51,675
|
||||||
|
3,12.58,1.29,2.1,20,103,1.48,.58,.53,1.4,7.6,.58,1.55,640
|
||||||
|
3,13.17,5.19,2.32,22,93,1.74,.63,.61,1.55,7.9,.6,1.48,725
|
||||||
|
3,13.84,4.12,2.38,19.5,89,1.8,.83,.48,1.56,9.01,.57,1.64,480
|
||||||
|
3,12.45,3.03,2.64,27,97,1.9,.58,.63,1.14,7.5,.67,1.73,880
|
||||||
|
3,14.34,1.68,2.7,25,98,2.8,1.31,.53,2.7,13,.57,1.96,660
|
||||||
|
3,13.48,1.67,2.64,22.5,89,2.6,1.1,.52,2.29,11.75,.57,1.78,620
|
||||||
|
3,12.36,3.83,2.38,21,88,2.3,.92,.5,1.04,7.65,.56,1.58,520
|
||||||
|
3,13.69,3.26,2.54,20,107,1.83,.56,.5,.8,5.88,.96,1.82,680
|
||||||
|
3,12.85,3.27,2.58,22,106,1.65,.6,.6,.96,5.58,.87,2.11,570
|
||||||
|
3,12.96,3.45,2.35,18.5,106,1.39,.7,.4,.94,5.28,.68,1.75,675
|
||||||
|
3,13.78,2.76,2.3,22,90,1.35,.68,.41,1.03,9.58,.7,1.68,615
|
||||||
|
3,13.73,4.36,2.26,22.5,88,1.28,.47,.52,1.15,6.62,.78,1.75,520
|
||||||
|
3,13.45,3.7,2.6,23,111,1.7,.92,.43,1.46,10.68,.85,1.56,695
|
||||||
|
3,12.82,3.37,2.3,19.5,88,1.48,.66,.4,.97,10.26,.72,1.75,685
|
||||||
|
3,13.58,2.58,2.69,24.5,105,1.55,.84,.39,1.54,8.66,.74,1.8,750
|
||||||
|
3,13.4,4.6,2.86,25,112,1.98,.96,.27,1.11,8.5,.67,1.92,630
|
||||||
|
3,12.2,3.03,2.32,19,96,1.25,.49,.4,.73,5.5,.66,1.83,510
|
||||||
|
3,12.77,2.39,2.28,19.5,86,1.39,.51,.48,.64,9.899999,.57,1.63,470
|
||||||
|
3,14.16,2.51,2.48,20,91,1.68,.7,.44,1.24,9.7,.62,1.71,660
|
||||||
|
3,13.71,5.65,2.45,20.5,95,1.68,.61,.52,1.06,7.7,.64,1.74,740
|
||||||
|
3,13.4,3.91,2.48,23,102,1.8,.75,.43,1.41,7.3,.7,1.56,750
|
||||||
|
3,13.27,4.28,2.26,20,120,1.59,.69,.43,1.35,10.2,.59,1.56,835
|
||||||
|
3,13.17,2.59,2.37,20,120,1.65,.68,.53,1.46,9.3,.6,1.62,840
|
||||||
|
3,14.13,4.1,2.74,24.5,96,2.05,.76,.56,1.35,9.2,.61,1.6,560
|
|
20
lab/data6.tsv
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
21.252 -555.640
|
||||||
|
179.842 3840.141
|
||||||
|
118.162 2274.989
|
||||||
|
114.269 1146.575
|
||||||
|
121.444 1840.589
|
||||||
|
87.624 1663.894
|
||||||
|
170.039 3504.537
|
||||||
|
192.651 3708.239
|
||||||
|
12.390 -358.240
|
||||||
|
144.264 2444.162
|
||||||
|
169.900 3348.941
|
||||||
|
63.254 271.623
|
||||||
|
72.439 900.423
|
||||||
|
71.108 77.543
|
||||||
|
179.476 3313.424
|
||||||
|
169.084 2525.653
|
||||||
|
99.073 734.413
|
||||||
|
195.528 4067.410
|
||||||
|
131.023 2182.147
|
||||||
|
12.424 490.714
|
|
42
lab/fires_thefts.csv
Normal file
@ -0,0 +1,42 @@
|
|||||||
|
6.2,29
|
||||||
|
9.5,44
|
||||||
|
10.5,36
|
||||||
|
7.7,37
|
||||||
|
8.6,53
|
||||||
|
34.1,68
|
||||||
|
11,75
|
||||||
|
6.9,18
|
||||||
|
7.3,31
|
||||||
|
15.1,25
|
||||||
|
29.1,34
|
||||||
|
2.2,14
|
||||||
|
5.7,11
|
||||||
|
2,11
|
||||||
|
2.5,22
|
||||||
|
4,16
|
||||||
|
5.4,27
|
||||||
|
2.2,9
|
||||||
|
7.2,29
|
||||||
|
15.1,30
|
||||||
|
16.5,40
|
||||||
|
18.4,32
|
||||||
|
36.2,41
|
||||||
|
39.7,147
|
||||||
|
18.5,22
|
||||||
|
23.3,29
|
||||||
|
12.2,46
|
||||||
|
5.6,23
|
||||||
|
21.8,4
|
||||||
|
21.6,31
|
||||||
|
9,39
|
||||||
|
3.6,15
|
||||||
|
5,32
|
||||||
|
28.6,27
|
||||||
|
17.4,32
|
||||||
|
11.3,34
|
||||||
|
3.4,17
|
||||||
|
11.9,46
|
||||||
|
10.5,42
|
||||||
|
10.7,43
|
||||||
|
10.8,34
|
||||||
|
4.8,19
|
|
488
lab/flats-predicted.tsv
Normal file
@ -0,0 +1,488 @@
|
|||||||
|
283505.6268716706
|
||||||
|
286807.81791486836
|
||||||
|
1070822.8900455572
|
||||||
|
291046.92186160106
|
||||||
|
140742.41438722756
|
||||||
|
499423.3316692108
|
||||||
|
289618.3089864515
|
||||||
|
702312.4665604271
|
||||||
|
891758.620733487
|
||||||
|
551573.3411180723
|
||||||
|
1188342.9805958075
|
||||||
|
307778.6267529641
|
||||||
|
542577.1455850884
|
||||||
|
640989.1946802845
|
||||||
|
518524.64774014754
|
||||||
|
164758.77251739136
|
||||||
|
284405.90478238475
|
||||||
|
278183.5653281631
|
||||||
|
505499.3787911708
|
||||||
|
415315.2007055009
|
||||||
|
249646.11355068226
|
||||||
|
156835.43489528715
|
||||||
|
279685.20054993266
|
||||||
|
357965.71224453143
|
||||||
|
520717.3458796448
|
||||||
|
696508.5570921783
|
||||||
|
1049074.8704929457
|
||||||
|
973233.9630660774
|
||||||
|
413541.1801909984
|
||||||
|
617900.1698498171
|
||||||
|
480055.6191585947
|
||||||
|
424484.2238776721
|
||||||
|
144181.2933548356
|
||||||
|
415105.98571251455
|
||||||
|
609781.6901043693
|
||||||
|
289163.24400765775
|
||||||
|
634003.9354090634
|
||||||
|
407983.3683475788
|
||||||
|
296013.47607986047
|
||||||
|
295840.89607969497
|
||||||
|
351445.84617400414
|
||||||
|
271615.57059556665
|
||||||
|
279685.20054993266
|
||||||
|
289518.75133290584
|
||||||
|
172127.23986813438
|
||||||
|
408056.39069419866
|
||||||
|
342430.25689915166
|
||||||
|
449394.5063358207
|
||||||
|
360697.52929069113
|
||||||
|
348841.99156168924
|
||||||
|
232789.50305631894
|
||||||
|
471204.29650383024
|
||||||
|
507398.4290893693
|
||||||
|
236285.5366482477
|
||||||
|
673235.2919599946
|
||||||
|
562931.0729317521
|
||||||
|
1297643.8083903352
|
||||||
|
284897.8523930212
|
||||||
|
470354.2757695722
|
||||||
|
231626.59599684452
|
||||||
|
813426.0818321182
|
||||||
|
482596.54474251246
|
||||||
|
554200.9048645728
|
||||||
|
285797.8826647134
|
||||||
|
415943.340962504
|
||||||
|
285797.8826647134
|
||||||
|
273352.9561172483
|
||||||
|
395711.2694393011
|
||||||
|
1067660.883268814
|
||||||
|
471102.3683978715
|
||||||
|
364864.07297880325
|
||||||
|
288126.77345057717
|
||||||
|
488056.66773908347
|
||||||
|
636369.4611877479
|
||||||
|
479389.55991534586
|
||||||
|
285661.69001834694
|
||||||
|
569147.3021980671
|
||||||
|
419418.359644889
|
||||||
|
530550.6490235961
|
||||||
|
672728.5567183747
|
||||||
|
363026.4200765549
|
||||||
|
299907.1723872403
|
||||||
|
351202.119001588
|
||||||
|
369903.8971827045
|
||||||
|
642178.7746957783
|
||||||
|
279957.58584266563
|
||||||
|
518278.5501153184
|
||||||
|
277665.3300496228
|
||||||
|
772360.6139796954
|
||||||
|
497236.74159552064
|
||||||
|
1492497.1421237364
|
||||||
|
259970.86902722623
|
||||||
|
283887.66950384446
|
||||||
|
402388.6738723164
|
||||||
|
280412.6508214593
|
||||||
|
287362.68818622956
|
||||||
|
552337.4263824199
|
||||||
|
232178.64009546567
|
||||||
|
218685.54057369017
|
||||||
|
518906.69037232135
|
||||||
|
141124.45701940136
|
||||||
|
296222.9387118688
|
||||||
|
631069.714795073
|
||||||
|
352456.49115118023
|
||||||
|
152387.11595556804
|
||||||
|
400578.2660040149
|
||||||
|
336623.90017860616
|
||||||
|
898123.2545322096
|
||||||
|
465940.4753769551
|
||||||
|
152978.37358072822
|
||||||
|
413959.85781599313
|
||||||
|
439002.80338841927
|
||||||
|
346431.4045650252
|
||||||
|
533434.410080821
|
||||||
|
283778.0121644036
|
||||||
|
608572.3855404289
|
||||||
|
156662.60725609973
|
||||||
|
339978.4591429831
|
||||||
|
495833.2573085991
|
||||||
|
355744.1536044081
|
||||||
|
549417.277971396
|
||||||
|
492198.33047798945
|
||||||
|
352166.7390270692
|
||||||
|
449394.5063358207
|
||||||
|
168060.96356058907
|
||||||
|
396375.5494110812
|
||||||
|
177203.6990648565
|
||||||
|
532879.5398094598
|
||||||
|
409129.4962441002
|
||||||
|
345796.70688956056
|
||||||
|
253057.96193332074
|
||||||
|
550809.2558537247
|
||||||
|
404508.3496651937
|
||||||
|
281485.75637136085
|
||||||
|
692688.1307704402
|
||||||
|
1253882.4585806779
|
||||||
|
404053.28468640003
|
||||||
|
284897.8523930212
|
||||||
|
161247.11884218533
|
||||||
|
286807.81791486836
|
||||||
|
536563.7734848312
|
||||||
|
390571.88758185424
|
||||||
|
492508.77591858146
|
||||||
|
269532.7774345322
|
||||||
|
345923.2562370354
|
||||||
|
292402.5123901308
|
||||||
|
282249.84163570846
|
||||||
|
164413.11723901654
|
||||||
|
171745.4448749825
|
||||||
|
377289.3581453778
|
||||||
|
1201439.6076718224
|
||||||
|
466078.7965377086
|
||||||
|
155479.84436675743
|
||||||
|
398322.645203793
|
||||||
|
287362.68818622956
|
||||||
|
394884.2615142288
|
||||||
|
369861.8638510977
|
||||||
|
232456.43009465688
|
||||||
|
239011.5948715186
|
||||||
|
423065.9583274397
|
||||||
|
345677.4062512281
|
||||||
|
401452.00860780326
|
||||||
|
296222.9387118688
|
||||||
|
1014275.1821450489
|
||||||
|
523846.70928365504
|
||||||
|
379927.0215777735
|
||||||
|
252084.41403696482
|
||||||
|
576788.1548415431
|
||||||
|
610352.7617597604
|
||||||
|
358141.3717574547
|
||||||
|
353357.47242124315
|
||||||
|
296222.9387118688
|
||||||
|
335716.2174733155
|
||||||
|
221571.17043761205
|
||||||
|
162639.09672451403
|
||||||
|
242695.82854689012
|
||||||
|
341504.76086498133
|
||||||
|
358054.4675195096
|
||||||
|
276901.2447852752
|
||||||
|
349291.90584071906
|
||||||
|
241623.21827503244
|
||||||
|
379063.37865988025
|
||||||
|
171080.66962515857
|
||||||
|
911505.5433358644
|
||||||
|
409966.6038550677
|
||||||
|
274363.1390064251
|
||||||
|
922419.4668142219
|
||||||
|
627682.7480283173
|
||||||
|
371223.5681464302
|
||||||
|
345018.2833468843
|
||||||
|
416461.57624104427
|
||||||
|
471102.3683978715
|
||||||
|
414551.36308017524
|
||||||
|
664041.8435589442
|
||||||
|
163576.00962804904
|
||||||
|
292920.5000296491
|
||||||
|
323491.6815168518
|
||||||
|
359378.5737549824
|
||||||
|
222623.58267103252
|
||||||
|
291811.0071259487
|
||||||
|
287671.46083276154
|
||||||
|
362206.9383379788
|
||||||
|
400305.8807112819
|
||||||
|
655941.6930452369
|
||||||
|
271406.85088062414
|
||||||
|
590104.5015878724
|
||||||
|
273217.0111099037
|
||||||
|
167469.45829640696
|
||||||
|
237537.33026412176
|
||||||
|
209912.82546051973
|
||||||
|
328411.508090744
|
||||||
|
413404.9875446319
|
||||||
|
317008.2091677958
|
||||||
|
288126.77345057717
|
||||||
|
618539.556803723
|
||||||
|
408020.25097942166
|
||||||
|
296222.9387118688
|
||||||
|
407946.7333547579
|
||||||
|
400441.8257186265
|
||||||
|
280894.49874620064
|
||||||
|
271615.57059556665
|
||||||
|
399677.7404542789
|
||||||
|
352756.8432735494
|
||||||
|
649670.509500929
|
||||||
|
287744.7308184033
|
||||||
|
359132.72376917506
|
||||||
|
935829.0070194959
|
||||||
|
397976.9899254182
|
||||||
|
916442.2739864588
|
||||||
|
608189.6395489062
|
||||||
|
518634.3050795884
|
||||||
|
226294.7783093643
|
||||||
|
423065.9583274397
|
||||||
|
478243.43201882445
|
||||||
|
757053.7737368431
|
||||||
|
272207.0758597488
|
||||||
|
672506.4286020978
|
||||||
|
474244.4425448631
|
||||||
|
280339.6284748394
|
||||||
|
590104.5015878724
|
||||||
|
493704.18518917536
|
||||||
|
1050680.2962596985
|
||||||
|
360791.94831314095
|
||||||
|
340846.3413199864
|
||||||
|
279957.58584266563
|
||||||
|
453597.22929642675
|
||||||
|
404754.19965100096
|
||||||
|
268977.907163171
|
||||||
|
609279.2055238511
|
||||||
|
567200.4540443772
|
||||||
|
787924.0945182545
|
||||||
|
546606.7868998129
|
||||||
|
1367849.2924584588
|
||||||
|
386086.9336493143
|
||||||
|
492402.85619253456
|
||||||
|
391718.01547837566
|
||||||
|
406836.9928120355
|
||||||
|
1056786.1669493234
|
||||||
|
392937.4133605389
|
||||||
|
1051579.8708110638
|
||||||
|
165140.81514956514
|
||||||
|
354923.6910291293
|
||||||
|
170599.06933943916
|
||||||
|
288126.77345057717
|
||||||
|
539274.7069028688
|
||||||
|
491846.1114134807
|
||||||
|
366883.4813911138
|
||||||
|
272107.51820620324
|
||||||
|
539274.7069028688
|
||||||
|
240805.7124872386
|
||||||
|
910183.3059070886
|
||||||
|
132573.47441833798
|
||||||
|
1281392.3542699316
|
||||||
|
574113.8564163265
|
||||||
|
440026.81084154046
|
||||||
|
282113.6489893419
|
||||||
|
555078.2821445055
|
||||||
|
286980.64555405575
|
||||||
|
286043.73265052075
|
||||||
|
287671.46083276154
|
||||||
|
1135717.478260357
|
||||||
|
322499.3543694245
|
||||||
|
290382.394250799
|
||||||
|
475754.999269835
|
||||||
|
389425.7596853328
|
||||||
|
951304.3368660425
|
||||||
|
290664.87922942726
|
||||||
|
423065.9583274397
|
||||||
|
297086.33399074007
|
||||||
|
525783.4577514498
|
||||||
|
639816.0750898337
|
||||||
|
290419.02924361994
|
||||||
|
209912.82546051973
|
||||||
|
278047.3726817966
|
||||||
|
471204.29650383024
|
||||||
|
393356.0909855336
|
||||||
|
286216.56028970814
|
||||||
|
610243.1164889877
|
||||||
|
258024.0208735363
|
||||||
|
485621.6555135402
|
||||||
|
494416.8605650635
|
||||||
|
492934.2643020555
|
||||||
|
387714.16655351117
|
||||||
|
513175.80325069244
|
||||||
|
392717.60340361344
|
||||||
|
620425.3511033851
|
||||||
|
481556.08256534376
|
||||||
|
596661.9020232063
|
||||||
|
258616.02141576228
|
||||||
|
405518.2849153486
|
||||||
|
398531.86019677937
|
||||||
|
476477.05120257585
|
||||||
|
750140.3713648937
|
||||||
|
523082.6240193075
|
||||||
|
364326.44395839423
|
||||||
|
812913.9539527084
|
||||||
|
367640.7552303055
|
||||||
|
414624.3854267951
|
||||||
|
520717.3458796448
|
||||||
|
290382.394250799
|
||||||
|
353191.4562072116
|
||||||
|
346933.89484653913
|
||||||
|
412049.6446551241
|
||||||
|
472004.30703397753
|
||||||
|
288854.22372210387
|
||||||
|
415660.8559838757
|
||||||
|
286043.73265052075
|
||||||
|
371312.86867696344
|
||||||
|
388033.78180300415
|
||||||
|
402770.7165044902
|
||||||
|
636131.847115458
|
||||||
|
299907.1723872403
|
||||||
|
330763.86673944385
|
||||||
|
279685.20054993266
|
||||||
|
348441.18174711213
|
||||||
|
570638.8377339414
|
||||||
|
350473.95900304016
|
||||||
|
283778.0121644036
|
||||||
|
1147659.1977649378
|
||||||
|
404262.4996793864
|
||||||
|
548899.0426928557
|
||||||
|
373930.2566043619
|
||||||
|
258616.02141576228
|
||||||
|
487639.65083948075
|
||||||
|
604255.5706353118
|
||||||
|
161492.96882799262
|
||||||
|
362535.18219293957
|
||||||
|
285797.8826647134
|
||||||
|
346690.62339444994
|
||||||
|
408920.2812511138
|
||||||
|
898898.1364741289
|
||||||
|
1310957.3359982735
|
||||||
|
331242.1914997686
|
||||||
|
288372.6234363844
|
||||||
|
346428.83809997514
|
||||||
|
167469.45829640696
|
||||||
|
482185.38826969493
|
||||||
|
966213.4818884054
|
||||||
|
398913.90282895317
|
||||||
|
360486.4575596759
|
||||||
|
472093.77773697267
|
||||||
|
771536.8815800177
|
||||||
|
157808.7351526211
|
||||||
|
471341.19887721795
|
||||||
|
947300.7355802
|
||||||
|
685429.320759138
|
||||||
|
624133.3002806145
|
||||||
|
345450.2106027431
|
||||||
|
625923.0651254668
|
||||||
|
823183.0807363826
|
||||||
|
286043.73265052075
|
||||||
|
378053.4434097254
|
||||||
|
209912.82546051973
|
||||||
|
285797.8826647134
|
||||||
|
292402.5123901308
|
||||||
|
227786.0662062167
|
||||||
|
388169.72681034874
|
||||||
|
301817.3855481093
|
||||||
|
403398.8567614932
|
||||||
|
408056.6383332206
|
||||||
|
288372.6234363844
|
||||||
|
477027.941922517
|
||||||
|
489928.3771004346
|
||||||
|
488854.10610318504
|
||||||
|
468297.7766441138
|
||||||
|
413468.15784437855
|
||||||
|
470354.2757695722
|
||||||
|
476048.28662703064
|
||||||
|
182552.2959152897
|
||||||
|
153151.20121991565
|
||||||
|
279230.13557113893
|
||||||
|
499884.0540278038
|
||||||
|
470354.2757695722
|
||||||
|
254759.70301826912
|
||||||
|
514950.07140421687
|
||||||
|
409584.5612228939
|
||||||
|
324706.13678055606
|
||||||
|
291183.11450796755
|
||||||
|
224274.66017003258
|
||||||
|
824251.8546184632
|
||||||
|
686957.4912878332
|
||||||
|
363294.1288261913
|
||||||
|
350516.91014297307
|
||||||
|
774117.7240498235
|
||||||
|
355270.5117548522
|
||||||
|
356939.56990935095
|
||||||
|
163403.18198886164
|
||||||
|
389771.1673246858
|
||||||
|
478752.4029189165
|
||||||
|
415660.8559838757
|
||||||
|
272834.96847772994
|
||||||
|
396757.8396822769
|
||||||
|
276901.2447852752
|
||||||
|
540593.6624385776
|
||||||
|
752377.9290087378
|
||||||
|
542331.0479602593
|
||||||
|
381737.6770850969
|
||||||
|
253576.19721186106
|
||||||
|
284405.90478238475
|
||||||
|
373150.93939069565
|
||||||
|
286425.7752826945
|
||||||
|
156071.34963093954
|
||||||
|
498731.10330413503
|
||||||
|
284269.7121360182
|
||||||
|
271615.57059556665
|
||||||
|
582898.2675790543
|
||||||
|
1188698.1246094392
|
||||||
|
353239.8566456388
|
||||||
|
209912.82546051973
|
||||||
|
390571.88758185424
|
||||||
|
467918.56588567584
|
||||||
|
477799.28863135166
|
||||||
|
229487.0643740993
|
||||||
|
443314.2178326511
|
||||||
|
164167.26725320923
|
||||||
|
423065.9583274397
|
||||||
|
367949.0721565106
|
||||||
|
694598.3439313092
|
||||||
|
566818.4114122035
|
||||||
|
409614.6154486634
|
||||||
|
287671.46083276154
|
||||||
|
279611.93056429084
|
||||||
|
549480.2006321207
|
||||||
|
424484.2238776721
|
||||||
|
805049.5544055897
|
||||||
|
771303.9567861691
|
||||||
|
364708.48659056803
|
||||||
|
195740.8607162901
|
||||||
|
267339.33637796924
|
||||||
|
293339.17765464383
|
||||||
|
1005711.7485086942
|
||||||
|
241911.92349787214
|
||||||
|
411248.9243979556
|
||||||
|
289937.42895790056
|
||||||
|
281485.75637136085
|
||||||
|
674386.7194189187
|
||||||
|
612810.7861278128
|
||||||
|
282113.6489893419
|
||||||
|
528949.2085092592
|
||||||
|
283778.0121644036
|
||||||
|
281731.6063571681
|
||||||
|
405837.6348782257
|
||||||
|
364415.1160658166
|
||||||
|
630638.8217051409
|
||||||
|
702621.239206959
|
||||||
|
642002.6651635239
|
||||||
|
355932.916552263
|
||||||
|
408056.39069419866
|
||||||
|
222456.15337063096
|
||||||
|
489789.6179890181
|
||||||
|
358141.82177678583
|
||||||
|
405026.584943734
|
||||||
|
350507.767823121
|
||||||
|
474268.6144337246
|
||||||
|
403289.1994220524
|
||||||
|
523109.1593262332
|
||||||
|
694598.3439313092
|
||||||
|
403990.1143866534
|
||||||
|
895763.127092311
|
||||||
|
488056.66773908347
|
||||||
|
351939.6625913376
|
||||||
|
288854.22372210387
|
||||||
|
335334.1748411417
|
||||||
|
307778.6267529641
|
||||||
|
335716.2174733155
|
||||||
|
476922.73259016784
|
||||||
|
362153.13956076576
|
||||||
|
383129.65496742557
|
|
4939
lab/flats-simple-train.csv
Normal file
488
lab/flats-test.tsv
Normal file
4939
lab/flats-train.tsv
Normal file
4939
lab/flats_for_clustering.tsv
Normal file
18
lab/generate_data6.py
Normal file
@ -0,0 +1,18 @@
|
|||||||
|
#! /usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
|
x = np.random.rand(20) * 200
|
||||||
|
d = np.random.normal(size=20) * 500
|
||||||
|
y = 0.1 * x**2 + 0.9 * x + 3 + d
|
||||||
|
|
||||||
|
np.set_printoptions(suppress=True, precision=3)
|
||||||
|
|
||||||
|
plt.scatter(x, y)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
data = np.vstack((x, y)).T
|
||||||
|
print(data)
|
||||||
|
np.savetxt('data6.tsv', data, delimiter='\t', fmt='%.3f')
|
2019
lab/gratkapl-centrenrm.csv
Normal file
5001
lab/gratkapl.csv
Normal file
46
lab/knn.py
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
#! /usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from seaborn import relplot
|
||||||
|
from sklearn.cluster import KMeans
|
||||||
|
from sklearn.decomposition import PCA
|
||||||
|
|
||||||
|
data = pd.read_csv('mieszkania4.tsv', sep='\t')
|
||||||
|
|
||||||
|
data = data[
|
||||||
|
(data['Powierzchnia w m2'] < 10000)
|
||||||
|
& (data['cena'] < 10000000)
|
||||||
|
]
|
||||||
|
X_columns = [
|
||||||
|
'cena',
|
||||||
|
'Powierzchnia w m2',
|
||||||
|
'Liczba pokoi',
|
||||||
|
'Liczba pięter w budynku',
|
||||||
|
'Piętro',
|
||||||
|
]
|
||||||
|
data['Piętro'] = data['Piętro'].apply(lambda x: 0 if x in ['parter', 'niski parter'] else x)
|
||||||
|
data['Piętro'] = data['Piętro'].apply(pd.to_numeric, errors='coerce')
|
||||||
|
data=data[:100]
|
||||||
|
X = data[X_columns].dropna().reset_index().drop(['index'], axis=1)
|
||||||
|
|
||||||
|
kmeans = KMeans(n_clusters=5).fit(X.values)
|
||||||
|
labels = pd.DataFrame(kmeans.labels_, columns=['label'])
|
||||||
|
labeled = pd.concat([labels, X], axis=1)
|
||||||
|
|
||||||
|
print(labeled)
|
||||||
|
|
||||||
|
relplot(data=labeled, x='Liczba pokoi', y='Piętro', hue='label')
|
||||||
|
relplot(data=labeled, x='Powierzchnia w m2', y='cena', hue='label')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
pca = PCA(n_components=2)
|
||||||
|
pca.fit(X)
|
||||||
|
|
||||||
|
X_transformed = pd.DataFrame(pca.transform(X), columns=['x1', 'x2'])
|
||||||
|
labeled_transformed = pd.concat([labels, X_transformed, X], axis=1)
|
||||||
|
|
||||||
|
relplot(data=labeled_transformed, x='x1', y='x2', hue='label')
|
||||||
|
plt.show()
|
792
lab/mushrooms-test.tsv
Normal file
@ -0,0 +1,792 @@
|
|||||||
|
e b s w t l f c b n e c s s w w p w o p n n m
|
||||||
|
p x y n t p f c n n e e s s w w p w o p n v g
|
||||||
|
e b y w t a f c b w e c s s w w p w o p n n m
|
||||||
|
e b s w t l f c b g e c s s w w p w o p k s m
|
||||||
|
e x y y t l f c b n e c s s w w p w o p n n m
|
||||||
|
e s f g f n f c n k e e s s w w p w o p k v u
|
||||||
|
e x s w t l f c b w e c s s w w p w o p n n m
|
||||||
|
e x s w t l f c b n e c s s w w p w o p k s g
|
||||||
|
p x y n t p f c n w e e s s w w p w o p n v u
|
||||||
|
p x y w t p f c n n e e s s w w p w o p n v u
|
||||||
|
e x y y t l f c b p e r s y w w p w o p n s g
|
||||||
|
e f s g f n f w b k t e s s w w p w o e n a g
|
||||||
|
e x y w t l f c b g e c s s w w p w o p n s g
|
||||||
|
e x f n f n f c n k e e s s w w p w o p n y u
|
||||||
|
e f y y t l f c b p e r s y w w p w o p n s g
|
||||||
|
e f f n f n f c n g e e s s w w p w o p k v u
|
||||||
|
e x f w f n f w b h t e f s w w p w o e k s g
|
||||||
|
e f y n t l f c b n e r s y w w p w o p k y p
|
||||||
|
e b s w t a f c b n e c s s w w p w o p n n g
|
||||||
|
e b s w t a f c b k e c s s w w p w o p k s m
|
||||||
|
e x f g f n f c n n e e s s w w p w o p n y u
|
||||||
|
e x s w t a f c b n e c s s w w p w o p n n m
|
||||||
|
e x f w t l f w n w t b s s w w p w o p n v d
|
||||||
|
e b s w t a f c b k e c s s w w p w o p n s m
|
||||||
|
e b y y t a f c b g e c s s w w p w o p k s m
|
||||||
|
p x y w t p f c n p e e s s w w p w o p k s g
|
||||||
|
e b y w t a f c b n e c s s w w p w o p k s g
|
||||||
|
e f y n t a f c b p e r s y w w p w o p k y g
|
||||||
|
e x f n t n f c b p t b s s p w p w o p k y d
|
||||||
|
e x y n t l f c b n e r s y w w p w o p k y g
|
||||||
|
e x f y t l f w n n t b s s w w p w o p n v d
|
||||||
|
e x y y t a f c b p e r s y w w p w o p n y p
|
||||||
|
e f y n t a f c b n e r s y w w p w o p n s p
|
||||||
|
e x f y t a f w n p t b s s w w p w o p u v d
|
||||||
|
e x s w t a f c b k e c s s w w p w o p k s m
|
||||||
|
e x f g f n f c n k e e s s w w p w o p n v u
|
||||||
|
e x f g f n f w b h t e f f w w p w o e n a g
|
||||||
|
e b s y t l f c b w e c s s w w p w o p n s m
|
||||||
|
e x y w t l f c b n e c s s w w p w o p k s g
|
||||||
|
e x s w t a f w n n t b s s w w p w o p n v d
|
||||||
|
e x s w f n f w b p t e f f w w p w o e k a g
|
||||||
|
e x y n t l f c b p e r s y w w p w o p k s g
|
||||||
|
e x y w t l f c b k e c s s w w p w o p n s m
|
||||||
|
e x f y t l f w n p t b s s w w p w o p n v d
|
||||||
|
e b s w t a f c b k e c s s w w p w o p n n g
|
||||||
|
e b y w t a f c b w e c s s w w p w o p n n g
|
||||||
|
e b y y t l f c b g e c s s w w p w o p k s g
|
||||||
|
e f f y t a f w n n t b s s w w p w o p u v d
|
||||||
|
p x s n t p f c n n e e s s w w p w o p n v g
|
||||||
|
e x f n f n f c n k e e s s w w p w o p n v u
|
||||||
|
e x y n t l f c b n e r s y w w p w o p k y p
|
||||||
|
e b s y t l f c b w e c s s w w p w o p n s g
|
||||||
|
e x f w f n f w b k t e f s w w p w o e k s g
|
||||||
|
e x y y t a f c b g e c s s w w p w o p n n g
|
||||||
|
p x s n t p f c n p e e s s w w p w o p k v u
|
||||||
|
p x s n t p f c n n e e s s w w p w o p k s u
|
||||||
|
e f y n t l f c b n e r s y w w p w o p n s p
|
||||||
|
e f f g f n f c n n e e s s w w p w o p k v u
|
||||||
|
e b s w t l f c b g e c s s w w p w o p k s g
|
||||||
|
e f f g f n f c n p e e s s w w p w o p k y u
|
||||||
|
p x s n t p f c n k e e s s w w p w o p n s g
|
||||||
|
e f f n f n f w b p t e s s w w p w o e k a g
|
||||||
|
e f f g f n f c n k e e s s w w p w o p n v u
|
||||||
|
e x y w t a f c b n e c s s w w p w o p n n m
|
||||||
|
e b s y t a f c b w e c s s w w p w o p k s g
|
||||||
|
p x y n t p f c n p e e s s w w p w o p n s g
|
||||||
|
e b y w t a f c b n e c s s w w p w o p n s g
|
||||||
|
e b s y t a f c b w e c s s w w p w o p n s m
|
||||||
|
e x y y t a f c b n e r s y w w p w o p k s p
|
||||||
|
e b s w t a f c b n e c s s w w p w o p n s m
|
||||||
|
e x f w t a f w n w t b s s w w p w o p n v d
|
||||||
|
e x s w t l f c b g e c s s w w p w o p k s g
|
||||||
|
e x s w f n f w b n t e f f w w p w o e n a g
|
||||||
|
e f f g f n f w b h t e f s w w p w o e k a g
|
||||||
|
e x y w t a f c b k e c s s w w p w o p k n g
|
||||||
|
e b y y t l f c b n e c s s w w p w o p k n g
|
||||||
|
e x s w f n f w b h t e f s w w p w o e k s g
|
||||||
|
e x y y t a f c b w e c s s w w p w o p k s g
|
||||||
|
e f s y t a f w n w t b s s w w p w o p u v d
|
||||||
|
e b s w t l f c b k e c s s w w p w o p n s g
|
||||||
|
e s f n f n f c n n e e s s w w p w o p k v u
|
||||||
|
e x s w t l f c b k e c s s w w p w o p k n g
|
||||||
|
e x f n t n f c b u t b s s g p p w o p n y d
|
||||||
|
e b s y t a f c b g e c s s w w p w o p n s m
|
||||||
|
e x s w f n f w b h t e f s w w p w o e n s g
|
||||||
|
p f s n t p f c n n e e s s w w p w o p k s g
|
||||||
|
e x s w f n f w b h t e s f w w p w o e k s g
|
||||||
|
e x f g f n f c n k e e s s w w p w o p n y u
|
||||||
|
e f f g f n f w b n t e s f w w p w o e n s g
|
||||||
|
e f s w f n f w b p t e s f w w p w o e k s g
|
||||||
|
e x y y t a f c b w e c s s w w p w o p k n m
|
||||||
|
e f s g f n f w b n t e f s w w p w o e k a g
|
||||||
|
e f f w f n f w b h t e f s w w p w o e k a g
|
||||||
|
e f f n t n f c b n t b s s p w p w o p k v d
|
||||||
|
e f f g f n f w b h t e s s w w p w o e k s g
|
||||||
|
p f y w t p f c n p e e s s w w p w o p k v u
|
||||||
|
e x f n f n f w b k t e s s w w p w o e n a g
|
||||||
|
e x s w t l f c b k e c s s w w p w o p n s g
|
||||||
|
e x f n t n f c b p t b s s p w p w o p n y d
|
||||||
|
p x s n t p f c n p e e s s w w p w o p k s u
|
||||||
|
e x f n t n f c b p t b s s g w p w o p k v d
|
||||||
|
e f s g f n f w b k t e s f w w p w o e n s g
|
||||||
|
e x y w t a f c b k e c s s w w p w o p k s g
|
||||||
|
p f y w t p f c n n e e s s w w p w o p n v g
|
||||||
|
p f y n t p f c n n e e s s w w p w o p k v g
|
||||||
|
e f f y t l f w n n t b s s w w p w o p u v d
|
||||||
|
e x f n f n f w b k t e f f w w p w o e n a g
|
||||||
|
e f s w f n f w b p t e f f w w p w o e k a g
|
||||||
|
e f f n f n f c n g e e s s w w p w o p n v u
|
||||||
|
e x y n t l f c b p e r s y w w p w o p k y p
|
||||||
|
e f s w f n f w b n t e f f w w p w o e n a g
|
||||||
|
p f s n t p f c n p e e s s w w p w o p k v u
|
||||||
|
e b s w t a f c b g e c s s w w p w o p k n g
|
||||||
|
e b s w t a f c b w e c s s w w p w o p k n g
|
||||||
|
p f y w t p f c n p e e s s w w p w o p k s u
|
||||||
|
e x f w f n f w b k t e s s w w p w o e k s g
|
||||||
|
p f y w t p f c n w e e s s w w p w o p n s g
|
||||||
|
e f f g f n f w b k t e f s w w p w o e k a g
|
||||||
|
e f f n f n f w b h t e s f w w p w o e k s g
|
||||||
|
e f f g f n f w b p t e f s w w p w o e k a g
|
||||||
|
e x s w f n f w b h t e s s w w p w o e k s g
|
||||||
|
e x f n t n f c b n t b s s w w p w o p n y d
|
||||||
|
e f f n f n f w b k t e f f w w p w o e n s g
|
||||||
|
e f s g f n f w b k t e f f w w p w o e n a g
|
||||||
|
e x f g f n f w b k t e s s w w p w o e k s g
|
||||||
|
e x y y t a f c b n e c s s w w p w o p n n g
|
||||||
|
e f f w f n f w b h t e s f w w p w o e k a g
|
||||||
|
e x f n t n f c b p t b s s g w p w o p n y d
|
||||||
|
e f f w f n f w b p t e f f w w p w o e n s g
|
||||||
|
e x f w f n f w b h t e s f w w p w o e k s g
|
||||||
|
p f s n t p f c n p e e s s w w p w o p k v g
|
||||||
|
e f f n f n f w b k t e s s w w p w o e k s g
|
||||||
|
e x f g f n f w b h t e s f w w p w o e k a g
|
||||||
|
e x f n f n f w b k t e s f w w p w o e n s g
|
||||||
|
e x s n f n f w b h t e f s w w p w o e k s g
|
||||||
|
p f y w t p f c n p e e s s w w p w o p n s u
|
||||||
|
e x f n t n f c b n t b s s g p p w o p n v d
|
||||||
|
e f s n f n f w b p t e s s w w p w o e n s g
|
||||||
|
p f y w t p f c n w e e s s w w p w o p k s g
|
||||||
|
p f y w t p f c n k e e s s w w p w o p k s g
|
||||||
|
e f s g f n f w b k t e f s w w p w o e n s g
|
||||||
|
e x f n f n f w b p t e f f w w p w o e n s g
|
||||||
|
e f f g f n f w b h t e s s w w p w o e k a g
|
||||||
|
p f s w t p f c n n e e s s w w p w o p k v u
|
||||||
|
e f s n f n f w b k t e f f w w p w o e n a g
|
||||||
|
e f y y t l f c b n e r s y w w p w o p k y g
|
||||||
|
p x y n t p f c n n e e s s w w p w o p k v u
|
||||||
|
e x f g f n f w b n t e s s w w p w o e k a g
|
||||||
|
e x f n f n f w b k t e s f w w p w o e k a g
|
||||||
|
e f f n f n f w b h t e s f w w p w o e n a g
|
||||||
|
e x y w t l f c b n e c s s w w p w o p n s g
|
||||||
|
e f f g f n f w b k t e f f w w p w o e n s g
|
||||||
|
e x s n f n f w b h t e s s w w p w o e k a g
|
||||||
|
p f s n t p f c n k e e s s w w p w o p k s u
|
||||||
|
e x f n t n f c b p t b s s p g p w o p n v d
|
||||||
|
e b y w t l f c b g e c s s w w p w o p n n m
|
||||||
|
e x s w f n f w b h t e s s w w p w o e n a g
|
||||||
|
e f s n f n f w b n t e s f w w p w o e n a g
|
||||||
|
e x f w f n f w b k t e s f w w p w o e k a g
|
||||||
|
e x s w f n f w b k t e f s w w p w o e k s g
|
||||||
|
e x y g t n f c b n t b s s p g p w o p k y d
|
||||||
|
e x f n t n f c b u t b s s w g p w o p k v d
|
||||||
|
e x f n t n f c b n t b s s w g p w o p n v d
|
||||||
|
e x f n t n f c b n t b s s g w p w o p n v d
|
||||||
|
e x s y t l f c b n e c s s w w p w o p n n m
|
||||||
|
e x s n f n f w b n t e f f w w p w o e k a g
|
||||||
|
e x s w f n f w b p t e s f w w p w o e k a g
|
||||||
|
p f s w t p f c n w e e s s w w p w o p k v u
|
||||||
|
e x s w f n f w b n t e s f w w p w o e n s g
|
||||||
|
e x f n t n f c b w t b s s w g p w o p k y d
|
||||||
|
e x s g f n f w b n t e f f w w p w o e n a g
|
||||||
|
p f y n t p f c n w e e s s w w p w o p n s u
|
||||||
|
p x s w t p f c n n e e s s w w p w o p n s u
|
||||||
|
e x f n f n f w b h t e f s w w p w o e k a g
|
||||||
|
e x s n f n f w b p t e s s w w p w o e k a g
|
||||||
|
e x f g f n f c n n e e s s w w p w o p n v u
|
||||||
|
p f y n t p f c n k e e s s w w p w o p k v g
|
||||||
|
e f s g f n f w b h t e f s w w p w o e n s g
|
||||||
|
p f s n t p f c n n e e s s w w p w o p n s g
|
||||||
|
e x s w f n f w b h t e s s w w p w o e k a g
|
||||||
|
e f f n t n f c b p t b s s p g p w o p n y d
|
||||||
|
e f s w f n f w b n t e f s w w p w o e n a g
|
||||||
|
e f f w f n f w b h t e f f w w p w o e n s g
|
||||||
|
e x f e t n f c b p t b s s p w p w o p n y d
|
||||||
|
e f f g t n f c b n t b s s p w p w o p k y d
|
||||||
|
e f f n f n f w b p t e f f w w p w o e k a g
|
||||||
|
e f s g f n f w b h t e s f w w p w o e k a g
|
||||||
|
e x f g f n f w b h t e f f w w p w o e n s g
|
||||||
|
p f s w t p f c n k e e s s w w p w o p n v u
|
||||||
|
e x y e t n f c b u t b s s p p p w o p n v d
|
||||||
|
e x y n t n f c b w t b s s p p p w o p n v d
|
||||||
|
e f s n f n f w b k t e f f w w p w o e k s g
|
||||||
|
e f f n f n f w b h t e s f w w p w o e n s g
|
||||||
|
p f y w t p f c n n e e s s w w p w o p n s g
|
||||||
|
e x s w f n f w b p t e f s w w p w o e n s g
|
||||||
|
e x y g t n f c b u t b s s p g p w o p n v d
|
||||||
|
e x s n f n f w b k t e f f w w p w o e k a g
|
||||||
|
e f f w f n f w b h t e f s w w p w o e k s g
|
||||||
|
e f f w t a f w n n t b s s w w p w o p n v d
|
||||||
|
e f f n t n f c b n t b s s p w p w o p k y d
|
||||||
|
e f f w f n f w b k t e f f w w p w o e k s g
|
||||||
|
e f s g f n f w b p t e s s w w p w o e n a g
|
||||||
|
e x f g t n f c b n t b s s w g p w o p k y d
|
||||||
|
e x f n t n f c b u t b s s p g p w o p k y d
|
||||||
|
e x s g f n f w b n t e f f w w p w o e n s g
|
||||||
|
e f f n f n f w b h t e f f w w p w o e n s g
|
||||||
|
e x y e t n f c b u t b s s p g p w o p n v d
|
||||||
|
e x f g t n f c b p t b s s g g p w o p n y d
|
||||||
|
p x s w t p f c n w e e s s w w p w o p k s g
|
||||||
|
e f f g t n f c b p t b s s g p p w o p k v d
|
||||||
|
e x y g t n f c b n t b s s g w p w o p k v d
|
||||||
|
e x y e t n f c b n t b s s w g p w o p n y d
|
||||||
|
e f f n t n f c b p t b s s g w p w o p n y d
|
||||||
|
e f f g t n f c b n t b s s g p p w o p k v d
|
||||||
|
e x s w f n f w b p t e s f w w p w o e n a g
|
||||||
|
e x y e t n f c b u t b s s g p p w o p k v d
|
||||||
|
p x s p f c f w n g e b s s w w p w o p n s d
|
||||||
|
e f f n t n f c b p t b s s p w p w o p n v d
|
||||||
|
e x f e t n f c b p t b s s w p p w o p k v d
|
||||||
|
e f y e t n f c b p t b s s w g p w o p n v d
|
||||||
|
p f s w t p f c n w e e s s w w p w o p k v g
|
||||||
|
e x y n t n f c b w t b s s w w p w o p k v d
|
||||||
|
e f f g t n f c b p t b s s p p p w o p k y d
|
||||||
|
e x f g t n f c b w t b s s p g p w o p n v d
|
||||||
|
e f s g f n f w b n t e f s w w p w o e n a g
|
||||||
|
e f f g t n f c b n t b s s w g p w o p k v d
|
||||||
|
e x y n t n f c b u t b s s w p p w o p n y d
|
||||||
|
e f f g t n f c b w t b s s g w p w o p n v d
|
||||||
|
e f f g t n f c b n t b s s w g p w o p k y d
|
||||||
|
e x y e t n f c b n t b s s p w p w o p n v d
|
||||||
|
e x y g t n f c b p t b s s p p p w o p k v d
|
||||||
|
e x y e t n f c b p t b s s w p p w o p n v d
|
||||||
|
e x f g t n f c b w t b s s w p p w o p k y d
|
||||||
|
e x y n t n f c b w t b s s g p p w o p k v d
|
||||||
|
e x y e t n f c b u t b s s w g p w o p n y d
|
||||||
|
e f f n t n f c b w t b s s w w p w o p n v d
|
||||||
|
e x y e t n f c b w t b s s w w p w o p k y d
|
||||||
|
e f f g t n f c b n t b s s g w p w o p k v d
|
||||||
|
e f f n t n f c b p t b s s g w p w o p k y d
|
||||||
|
e f s w f n f w b k t e s s w w p w o e k s g
|
||||||
|
p x f g f f f c b h e b k k n n p w o l h y d
|
||||||
|
e x y g t n f c b u t b s s p w p w o p k v d
|
||||||
|
e x f g t n f c b u t b s s w g p w o p k v d
|
||||||
|
p x s w t p f c n n e e s s w w p w o p k v g
|
||||||
|
e f y e t n f c b w t b s s w p p w o p k v d
|
||||||
|
e x y e t n f c b w t b s s g w p w o p n y d
|
||||||
|
e x f g t n f c b p t b s s w w p w o p k v d
|
||||||
|
e f f n t n f c b p t b s s g g p w o p n v d
|
||||||
|
e f y e t n f c b u t b s s g w p w o p k v d
|
||||||
|
e x f n t n f c b w t b s s w p p w o p k v d
|
||||||
|
e f f n t n f c b w t b s s w p p w o p k y d
|
||||||
|
e x y g t n f c b u t b s s p p p w o p n y d
|
||||||
|
e x f e t n f c b p t b s s p p p w o p k v d
|
||||||
|
e f f n t n f c b p t b s s w g p w o p k v d
|
||||||
|
e x y n t n f c b w t b s s w w p w o p k y d
|
||||||
|
p x f p f c f w n n e b s s w w p w o p n s d
|
||||||
|
e f f g t n f c b p t b s s p g p w o p n y d
|
||||||
|
e x y n t n f c b w t b s s g g p w o p n y d
|
||||||
|
e x y g t n f c b w t b s s g w p w o p k v d
|
||||||
|
e x f n t n f c b w t b s s w w p w o p n y d
|
||||||
|
e x y g t n f c b n t b s s p w p w o p n y d
|
||||||
|
e f f g t n f c b n t b s s p g p w o p n v d
|
||||||
|
e x f e t n f c b p t b s s w w p w o p k y d
|
||||||
|
e x f e t n f c b n t b s s p w p w o p n v d
|
||||||
|
e x y g t n f c b u t b s s w w p w o p k v d
|
||||||
|
e x y n t n f c b u t b s s g p p w o p k y d
|
||||||
|
e x y n t n f c b u t b s s w w p w o p n y d
|
||||||
|
e x f n t n f c b u t b s s g w p w o p k y d
|
||||||
|
e x y e t n f c b n t b s s g g p w o p k y d
|
||||||
|
e x y g t n f c b n t b s s w g p w o p n y d
|
||||||
|
e x y g t n f c b w t b s s w g p w o p k y d
|
||||||
|
e x y e t n f c b n t b s s g p p w o p n v d
|
||||||
|
e f f g t n f c b p t b s s p w p w o p k y d
|
||||||
|
e x f g t n f c b u t b s s w w p w o p n v d
|
||||||
|
e x f e t n f c b n t b s s g w p w o p n v d
|
||||||
|
e x f g t n f c b w t b s s w g p w o p k v d
|
||||||
|
e f f n t n f c b n t b s s p p p w o p n y d
|
||||||
|
e f f g t n f c b n t b s s g p p w o p n v d
|
||||||
|
e f f n t n f c b w t b s s g g p w o p n y d
|
||||||
|
e f f n t n f c b u t b s s w g p w o p k v d
|
||||||
|
e x y n t n f c b p t b s s p p p w o p k v d
|
||||||
|
e x f g t n f c b n t b s s p w p w o p n v d
|
||||||
|
e x f g t n f c b p t b s s w w p w o p k y d
|
||||||
|
e x f e t n f c b w t b s s w w p w o p k y d
|
||||||
|
e x y g t n f c b u t b s s g p p w o p n v d
|
||||||
|
e x y n t n f c b u t b s s g g p w o p k y d
|
||||||
|
e x y n t n f c b n t b s s g w p w o p n y d
|
||||||
|
e x f n t n f c b u t b s s w p p w o p n y d
|
||||||
|
e x f g t n f c b u t b s s w g p w o p n v d
|
||||||
|
e x y e t n f c b u t b s s w p p w o p n v d
|
||||||
|
e f f n t n f c b p t b s s w w p w o p k v d
|
||||||
|
p x f g f f f c b p e b k k b n p w o l h y d
|
||||||
|
e f y e t n f c b p t b s s p p p w o p n v d
|
||||||
|
p x f g f c f c n p e b s s w w p w o p n s d
|
||||||
|
p x s p f c f w n n e b s s w w p w o p n v d
|
||||||
|
e f y n t n f c b p t b s s p w p w o p k y d
|
||||||
|
p x f g f f f c b p e b k k p n p w o l h y d
|
||||||
|
e f y n t n f c b p t b s s w g p w o p n y d
|
||||||
|
p f f g f f f c b g e b k k p b p w o l h v p
|
||||||
|
e f f e t n f c b u t b s s w p p w o p k y d
|
||||||
|
e f f e t n f c b w t b s s p p p w o p k y d
|
||||||
|
e f y g t n f c b n t b s s g g p w o p k v d
|
||||||
|
p x y g f f f c b g e b k k n p p w o l h v g
|
||||||
|
e f f e t n f c b w t b s s g w p w o p n y d
|
||||||
|
e f y g t n f c b n t b s s p p p w o p n v d
|
||||||
|
p x f g f f f c b p e b k k p b p w o l h y p
|
||||||
|
p x f g f f f c b h e b k k b b p w o l h v d
|
||||||
|
p x f g f f f c b g e b k k p p p w o l h y d
|
||||||
|
e f y n t n f c b p t b s s p w p w o p n v d
|
||||||
|
p x f p f c f w n p e b s s w w p w o p n s d
|
||||||
|
e f y e t n f c b w t b s s g w p w o p k v d
|
||||||
|
p x f g f f f c b p e b k k b n p w o l h v p
|
||||||
|
e f y e t n f c b p t b s s g g p w o p n y d
|
||||||
|
e f f e t n f c b p t b s s w g p w o p k y d
|
||||||
|
e f y n t n f c b n t b s s w w p w o p k v d
|
||||||
|
p x f g f f f c b h e b k k p p p w o l h y g
|
||||||
|
e f f e t n f c b w t b s s p w p w o p n y d
|
||||||
|
e f y n t n f c b n t b s s w p p w o p n y d
|
||||||
|
e f y e t n f c b n t b s s p w p w o p n v d
|
||||||
|
e f y g t n f c b p t b s s p g p w o p n y d
|
||||||
|
e f f e t n f c b n t b s s w g p w o p k y d
|
||||||
|
p x f g f f f c b p e b k k n n p w o l h v d
|
||||||
|
p x f g f f f c b g e b k k b b p w o l h y p
|
||||||
|
e x f e t n f c b n t b s s g p p w o p k y d
|
||||||
|
p x s g f c f w n g e b s s w w p w o p n s d
|
||||||
|
e f y e t n f c b w t b s s w g p w o p k v d
|
||||||
|
p x f g f f f c b p e b k k n n p w o l h y d
|
||||||
|
e f f e t n f c b u t b s s w p p w o p n y d
|
||||||
|
e x f e t n f c b u t b s s p w p w o p k v d
|
||||||
|
e f f e t n f c b n t b s s g w p w o p n v d
|
||||||
|
p x f p f c f c n n e b s s w w p w o p k v d
|
||||||
|
e f y g t n f c b n t b s s g w p w o p k y d
|
||||||
|
p x f g f f f c b h e b k k b p p w o l h v p
|
||||||
|
e f y g t n f c b u t b s s w p p w o p k v d
|
||||||
|
e f f e t n f c b w t b s s p p p w o p n v d
|
||||||
|
e f y e t n f c b u t b s s w w p w o p k y d
|
||||||
|
p x f w f c f w n u e b s s w w p w o p n s d
|
||||||
|
p x y y f f f c b h e b k k n p p w o l h y d
|
||||||
|
e f f e t n f c b u t b s s g p p w o p n y d
|
||||||
|
e x y n t n f c b u t b s s w w p w o p k v d
|
||||||
|
e f y n t n f c b w t b s s w w p w o p n v d
|
||||||
|
e f y g t n f c b n t b s s g w p w o p k v d
|
||||||
|
p x s g f c f w n n e b s s w w p w o p k s d
|
||||||
|
e f y e t n f c b w t b s s w w p w o p n v d
|
||||||
|
e f y g t n f c b p t b s s g w p w o p k v d
|
||||||
|
p x y y f f f c b p e b k k n n p w o l h y d
|
||||||
|
p x f g f c f w n n e b s s w w p w o p k s d
|
||||||
|
e f y e t n f c b u t b s s g w p w o p n v d
|
||||||
|
p f f g f f f c b p e b k k n p p w o l h y d
|
||||||
|
p x f p f c f c n g e b s s w w p w o p k s d
|
||||||
|
e f y e t n f c b n t b s s g g p w o p k y d
|
||||||
|
e f y n t n f c b n t b s s p g p w o p k y d
|
||||||
|
e x y n t n f c b w t b s s g w p w o p k y d
|
||||||
|
e f y n t n f c b n t b s s g p p w o p k y d
|
||||||
|
e f y e t n f c b u t b s s w g p w o p k y d
|
||||||
|
e f y n t n f c b u t b s s g p p w o p n v d
|
||||||
|
e f f g t n f c b u t b s s g p p w o p n v d
|
||||||
|
e f f e t n f c b u t b s s w g p w o p n y d
|
||||||
|
e f y n t n f c b p t b s s p p p w o p n v d
|
||||||
|
p x s w f c f w n g e b s s w w p w o p n v d
|
||||||
|
p x f g f f f c b h e b k k p b p w o l h y g
|
||||||
|
e f y g t n f c b n t b s s w p p w o p n v d
|
||||||
|
e f f g t n f c b u t b s s p w p w o p n v d
|
||||||
|
e f f e t n f c b n t b s s p p p w o p n y d
|
||||||
|
e f f n t n f c b p t b s s w p p w o p k y d
|
||||||
|
e f y e t n f c b p t b s s w p p w o p n y d
|
||||||
|
e f y g t n f c b w t b s s p g p w o p n y d
|
||||||
|
e f y n t n f c b w t b s s g w p w o p k v d
|
||||||
|
e f y e t n f c b n t b s s g g p w o p k v d
|
||||||
|
e f y n t n f c b n t b s s p p p w o p k v d
|
||||||
|
e x f g t n f c b n t b s s w p p w o p n y d
|
||||||
|
p x f g f f f c b g e b k k n p p w o l h y d
|
||||||
|
e f y g t n f c b n t b s s p w p w o p n y d
|
||||||
|
p x s w f c f w n n e b s s w w p w o p k v d
|
||||||
|
e f y e t n f c b p t b s s p w p w o p n y d
|
||||||
|
e f y n t n f c b u t b s s w p p w o p n v d
|
||||||
|
p x f w f c f w n n e b s s w w p w o p k v d
|
||||||
|
e f y n t n f c b w t b s s g g p w o p k v d
|
||||||
|
p x f g f f f c b g e b k k n n p w o l h y g
|
||||||
|
e f f e t n f c b n t b s s w w p w o p k v d
|
||||||
|
p x f w f c f c n p e b s s w w p w o p n v d
|
||||||
|
p x f g f f f c b p e b k k b p p w o l h y p
|
||||||
|
p f y g f f f c b p e b k k n b p w o l h v g
|
||||||
|
e f f g t n f c b p t b s s g w p w o p k v d
|
||||||
|
p x f p f c f c n n e b s s w w p w o p n v d
|
||||||
|
p x f y f f f c b h e b k k b b p w o l h v g
|
||||||
|
e x y g t n f c b p t b s s w p p w o p k y d
|
||||||
|
p f y g f f f c b p e b k k b b p w o l h v d
|
||||||
|
p x f g f c f c n g e b s s w w p w o p k s d
|
||||||
|
e f y n t n f c b n t b s s g w p w o p k v d
|
||||||
|
p f f g f f f c b p e b k k p b p w o l h v g
|
||||||
|
p f f g f f f c b p e b k k p n p w o l h v g
|
||||||
|
p x y g f f f c b h e b k k n n p w o l h y d
|
||||||
|
p x f p f c f w n u e b s s w w p w o p n v d
|
||||||
|
p x y g f f f c b g e b k k n p p w o l h v d
|
||||||
|
p f f g f f f c b p e b k k b n p w o l h v p
|
||||||
|
e f y u f n f c n h e ? s f w w p w o f h y d
|
||||||
|
p x y e f y f c n b t ? k s p p p w o e w v d
|
||||||
|
p f f y f f f c b g e b k k n n p w o l h y g
|
||||||
|
p f f y f f f c b h e b k k n p p w o l h v g
|
||||||
|
p x y y f f f c b p e b k k n p p w o l h v d
|
||||||
|
p f s g t f f c b h t b s s w w p w o p h v u
|
||||||
|
p x y y f f f c b p e b k k p p p w o l h y p
|
||||||
|
p f y g f f f c b h e b k k n n p w o l h y p
|
||||||
|
p f f g f f f c b p e b k k n b p w o l h y g
|
||||||
|
p f f y f f f c b h e b k k p b p w o l h v g
|
||||||
|
p f y y f f f c b h e b k k n p p w o l h v p
|
||||||
|
p x y g f f f c b g e b k k p p p w o l h y p
|
||||||
|
p x f y f f f c b g e b k k n n p w o l h y g
|
||||||
|
p f f y f f f c b p e b k k p p p w o l h y g
|
||||||
|
p x y g f f f c b h e b k k n b p w o l h v d
|
||||||
|
p x y g f f f c b p e b k k b n p w o l h y g
|
||||||
|
p f y y f f f c b h e b k k p p p w o l h v g
|
||||||
|
p f y g f f f c b p e b k k n b p w o l h v p
|
||||||
|
e x y r f n f c n p e ? s f w w p w o f h v d
|
||||||
|
p f y g f f f c b g e b k k b n p w o l h y d
|
||||||
|
p x y g f f f c b p e b k k b n p w o l h v g
|
||||||
|
p x f y f f f c b p e b k k b p p w o l h v g
|
||||||
|
p f y g f f f c b p e b k k p p p w o l h y d
|
||||||
|
p f y y f f f c b p e b k k b b p w o l h v g
|
||||||
|
p f y y f f f c b h e b k k n b p w o l h y g
|
||||||
|
e x y u f n f c n h e ? s f w w p w o f h y d
|
||||||
|
p x f y f f f c b h e b k k p n p w o l h v g
|
||||||
|
e f f e t n f c b u t b s s g w p w o p n y d
|
||||||
|
e f y n t n f c b n t b s s g g p w o p n v d
|
||||||
|
p x y g f f f c b p e b k k p n p w o l h v p
|
||||||
|
p f f g f f f c b h e b k k p b p w o l h y g
|
||||||
|
p x y y f f f c b g e b k k p b p w o l h v g
|
||||||
|
p f f y f f f c b g e b k k p p p w o l h y p
|
||||||
|
p f y g f f f c b h e b k k b p p w o l h v g
|
||||||
|
p x f y f f f c b h e b k k n n p w o l h y d
|
||||||
|
p f y y f f f c b h e b k k n n p w o l h y d
|
||||||
|
e x s b t n f c b w e ? s s e w p w t e w c w
|
||||||
|
p f y g f f f c b h e b k k n n p w o l h v g
|
||||||
|
p x y g f f f c b h e b k k p p p w o l h y d
|
||||||
|
p x f y f f f c b h e b k k p p p w o l h v p
|
||||||
|
p x y y f f f c b g e b k k p p p w o l h y d
|
||||||
|
p f y g f f f c b p e b k k n b p w o l h y d
|
||||||
|
p f y g f f f c b p e b k k p b p w o l h v p
|
||||||
|
p x f y f f f c b p e b k k p n p w o l h v p
|
||||||
|
p f f y f f f c b p e b k k b n p w o l h y g
|
||||||
|
p f y g f f f c b h e b k k n b p w o l h y g
|
||||||
|
p f y g f f f c b g e b k k p b p w o l h v p
|
||||||
|
e f f g t n f c b u t b s s p w p w o p k v d
|
||||||
|
p x y y f f f c b p e b k k p b p w o l h v p
|
||||||
|
p x f y f f f c b h e b k k p n p w o l h v p
|
||||||
|
p f y g f f f c b g e b k k n p p w o l h v g
|
||||||
|
p f f g f f f c b p e b k k p n p w o l h v d
|
||||||
|
p f f g f f f c b g e b k k p n p w o l h y p
|
||||||
|
e f y u f n f c n u e ? s f w w p w o f h v d
|
||||||
|
e f y n t n f c b n t b s s p w p w o p n y d
|
||||||
|
p x y y f f f c b g e b k k n n p w o l h y g
|
||||||
|
p x s g t f f c b h t b f s w w p w o p h s g
|
||||||
|
p x y n f s f c n b t ? s k w p p w o e w v p
|
||||||
|
e f y e t n f c b n t b s s w p p w o p n y d
|
||||||
|
e f y p t n f c b w e ? s s e e p w t e w c w
|
||||||
|
p f f g f f f c b p e b k k n n p w o l h v p
|
||||||
|
p x y y f f f c b g e b k k b b p w o l h v d
|
||||||
|
p x y y f f f c b h e b k k p b p w o l h v p
|
||||||
|
p f f g f f f c b g e b k k p p p w o l h y g
|
||||||
|
p f s b t f f c b w t b f s w w p w o p h s u
|
||||||
|
p x f y f f f c b h e b k k n b p w o l h v d
|
||||||
|
p x y g f f f c b h e b k k b b p w o l h y d
|
||||||
|
p f f g f f f c b h e b k k p n p w o l h v g
|
||||||
|
e f y e t n f c b u t b s s p w p w o p n y d
|
||||||
|
p f y g f f f c b h e b k k b b p w o l h y p
|
||||||
|
p x f y f f f c b h e b k k n p p w o l h y d
|
||||||
|
p x f y f f f c b g e b k k b b p w o l h v p
|
||||||
|
p x y n f y f c n b t ? s s w p p w o e w v l
|
||||||
|
e x s n t n f c b w e ? s s w e p w t e w c w
|
||||||
|
p x f y f f f c b g e b k k n n p w o l h v g
|
||||||
|
e x y e t n f c b w e ? s s e w p w t e w c w
|
||||||
|
p f f g f f f c b g e b k k p p p w o l h v g
|
||||||
|
p f s b t f f c b w t b f s w w p w o p h v g
|
||||||
|
e k y b t n f c b e e ? s s e w p w t e w c w
|
||||||
|
p f y g f f f c b g e b k k b p p w o l h y g
|
||||||
|
p x s w t f f c b h t b f s w w p w o p h s u
|
||||||
|
e x s e t n f c b e e ? s s w w p w t e w c w
|
||||||
|
p f f g f f f c b h e b k k n b p w o l h v g
|
||||||
|
p f f g f f f c b h e b k k n n p w o l h v p
|
||||||
|
p x y g f f f c b p e b k k p b p w o l h v p
|
||||||
|
p x y g f f f c b g e b k k n n p w o l h v d
|
||||||
|
p x y n f s f c n b t ? s s w p p w o e w v d
|
||||||
|
p f f n f n f c n w e ? k y w y p w o e w v d
|
||||||
|
e f s p t n f c b e e ? s s e e p w t e w c w
|
||||||
|
p f f y f f f c b h e b k k n p p w o l h y d
|
||||||
|
e k s b t n f c b w e ? s s w w p w t e w c w
|
||||||
|
p x y e f y f c n b t ? k s p w p w o e w v l
|
||||||
|
e x s p t n f c b e e ? s s w e p w t e w c w
|
||||||
|
e k y p t n f c b w e ? s s w e p w t e w c w
|
||||||
|
e x s b t n f c b e e ? s s w e p w t e w c w
|
||||||
|
p f f y f f f c b g e b k k n b p w o l h y p
|
||||||
|
p f s b t f f c b p t b f s w w p w o p h v u
|
||||||
|
e x y r f n f c n w e ? s f w w p w o f h v d
|
||||||
|
p f s b t f f c b h t b s s w w p w o p h s g
|
||||||
|
p x y n f f f c n b t ? s k p p p w o e w v l
|
||||||
|
p x s g t f f c b w t b s f w w p w o p h v u
|
||||||
|
e f y w f n f c n p e ? s f w w p w o f h v d
|
||||||
|
p x y n f s f c n b t ? k k w p p w o e w v p
|
||||||
|
p f s w t f f c b w t b f f w w p w o p h v u
|
||||||
|
p f y y f f f c b g e b k k b n p w o l h y d
|
||||||
|
p f s g t f f c b w t b s s w w p w o p h v u
|
||||||
|
p f s w t f f c b p t b s f w w p w o p h v g
|
||||||
|
p x s b t f f c b p t b f f w w p w o p h v g
|
||||||
|
e f y c f n f w n w e b s s w n p w o e w v l
|
||||||
|
p x y n f f f c n b t ? k k w w p w o e w v p
|
||||||
|
p b y p t n f c b r e b s s w w p w t p r v g
|
||||||
|
e f s e t n f c b w e ? s s e w p w t e w c w
|
||||||
|
e x s e t n f c b w e ? s s w e p w t e w c w
|
||||||
|
p f y y f f f c b g e b k k b n p w o l h v d
|
||||||
|
e x y u f n f c n p e ? s f w w p w o f h y d
|
||||||
|
p x y n f s f c n b t ? k k w p p w o e w v l
|
||||||
|
p f y y f f f c b p e b k k n n p w o l h v p
|
||||||
|
p f s b t f f c b h t b f f w w p w o p h s g
|
||||||
|
p x y n f s f c n b t ? s k w p p w o e w v d
|
||||||
|
p f y b t n f c b w e b s s w w p w t p r v m
|
||||||
|
p x y n f y f c n b t ? s s p p p w o e w v p
|
||||||
|
p x y n f y f c n b t ? s s p w p w o e w v l
|
||||||
|
p x f y f f f c b p e b k k n n p w o l h v d
|
||||||
|
e k s p t n f c b w e ? s s w w p w t e w c w
|
||||||
|
p x y e f y f c n b t ? k k w p p w o e w v l
|
||||||
|
p x y n f s f c n b t ? k s w w p w o e w v d
|
||||||
|
p f y y f f f c b h e b k k b p p w o l h y g
|
||||||
|
p x f y f f f c b g e b k k p n p w o l h y d
|
||||||
|
e f y n t n f c b e e ? s s w e p w t e w c w
|
||||||
|
e k y e t n f c b w e ? s s w w p w t e w c w
|
||||||
|
e k y c f n f w n w e b s s w n p w o e w v l
|
||||||
|
p x y n f s f c n b t ? k s w p p w o e w v p
|
||||||
|
p x y n f f f c n b t ? k k w p p w o e w v p
|
||||||
|
p f s b t f f c b p t b s s w w p w o p h v u
|
||||||
|
e f y n f n f w n w e b s s w n p w o e w v l
|
||||||
|
p x y n f f f c n b t ? k s w p p w o e w v d
|
||||||
|
p x y n f s f c n b t ? s s p w p w o e w v d
|
||||||
|
p f s w t n f c b r e b s s w w p w t p r v m
|
||||||
|
e k y n t n f c b e e ? s s e w p w t e w c w
|
||||||
|
p f y y f f f c b g e b k k b b p w o l h v p
|
||||||
|
p f y y f f f c b p e b k k b n p w o l h y p
|
||||||
|
p f y y f f f c b p e b k k n n p w o l h y g
|
||||||
|
p x y g f f f c b g e b k k p p p w o l h v d
|
||||||
|
p f s b t f f c b h t b s f w w p w o p h s g
|
||||||
|
e k y c f n f w n w e b f f w n p w o e w v l
|
||||||
|
p x y e f y f c n b t ? s k p p p w o e w v d
|
||||||
|
p f s b t f f c b w t b f s w w p w o p h s g
|
||||||
|
e k f c f n f w n w e b s s w n p w o e w v l
|
||||||
|
p x y e f y f c n b t ? s k p w p w o e w v l
|
||||||
|
p f y y f f f c b h e b k k p p p w o l h y g
|
||||||
|
e f f c f n f w n w e b f s w n p w o e w v l
|
||||||
|
p x y e f y f c n b t ? s k p w p w o e w v p
|
||||||
|
p x y n f s f c n b t ? k s p w p w o e w v d
|
||||||
|
e x y n t n f c b w e ? s s w e p w t e w c w
|
||||||
|
p x y n f f f c n b t ? k s w w p w o e w v l
|
||||||
|
p x s b t f f c b w t b s f w w p w o p h v u
|
||||||
|
e x y w f n f c n w e ? s f w w p w o f h v d
|
||||||
|
e x s p t n f c b e e ? s s e w p w t e w c w
|
||||||
|
p x y g f f f c b h e b k k b b p w o l h v g
|
||||||
|
p f s b t n f c b w e b s s w w p w t p r v g
|
||||||
|
p f s g t f f c b h t b s s w w p w o p h s g
|
||||||
|
p x y n f s f c n b t ? k s p p p w o e w v d
|
||||||
|
p x f y f f f c b h e b k k p p p w o l h v g
|
||||||
|
p b s w t n f c b w e b s s w w p w t p r v m
|
||||||
|
p b s b t n f c b w e b s s w w p w t p r v m
|
||||||
|
p f s g t f f c b h t b s f w w p w o p h v u
|
||||||
|
e k y n t n f c b e e ? s s e e p w t e w c w
|
||||||
|
p x s b t f f c b p t b s f w w p w o p h v g
|
||||||
|
p f s g t f f c b w t b f f w w p w o p h v u
|
||||||
|
p x y n f f f c n b t ? s s w p p w o e w v p
|
||||||
|
e x s b t n f c b w e ? s s e e p w t e w c w
|
||||||
|
p x s w t f f c b h t b s f w w p w o p h s g
|
||||||
|
p f y y f f f c b p e b k k n p p w o l h y d
|
||||||
|
p x s g t f f c b p t b s s w w p w o p h s g
|
||||||
|
p x f y f f f c b p e b k k n n p w o l h v p
|
||||||
|
p x y y f f f c b g e b k k n b p w o l h y g
|
||||||
|
p k f n f n f c n w e ? k y w y p w o e w v d
|
||||||
|
p f y g f f f c b h e b k k p n p w o l h v g
|
||||||
|
p x y n f s f c n b t ? k k p w p w o e w v p
|
||||||
|
e f y w f n f c n w e ? s f w w p w o f h y d
|
||||||
|
p f y y f f f c b g e b k k b p p w o l h v g
|
||||||
|
p f y e f f f c n b t ? k k p w p w o e w v d
|
||||||
|
p x y e f s f c n b t ? k s w p p w o e w v d
|
||||||
|
p f s e f y f c n b t ? s s w p p w o e w v l
|
||||||
|
p f y e f s f c n b t ? k s w p p w o e w v d
|
||||||
|
p x s n f f f c n b t ? s k p p p w o e w v d
|
||||||
|
p f y n f s f c n b t ? k s w w p w o e w v p
|
||||||
|
p f y n f y f c n b t ? s k p p p w o e w v l
|
||||||
|
p f s e f s f c n b t ? s s w w p w o e w v l
|
||||||
|
p x s n f y f c n b t ? k k w p p w o e w v d
|
||||||
|
p f y e f y f c n b t ? k s w w p w o e w v p
|
||||||
|
e b f w f n f w b g e ? s s w w p w t p w n g
|
||||||
|
p x s e f s f c n b t ? k k w p p w o e w v p
|
||||||
|
p x y e f f f c n b t ? k k w w p w o e w v d
|
||||||
|
p f y e f s f c n b t ? s k w w p w o e w v d
|
||||||
|
p f s n f y f c n b t ? s s p w p w o e w v d
|
||||||
|
p x s e f f f c n b t ? k k w w p w o e w v d
|
||||||
|
p x y e f s f c n b t ? k k p p p w o e w v l
|
||||||
|
p x y e f s f c n b t ? s k w p p w o e w v p
|
||||||
|
p x y e f s f c n b t ? k k p p p w o e w v p
|
||||||
|
p x s e f s f c n b t ? k s p w p w o e w v d
|
||||||
|
p f s n f y f c n b t ? s k w w p w o e w v p
|
||||||
|
p k y n f s f c n b t ? k k w w p w o e w v l
|
||||||
|
p f s e f f f c n b t ? s k w w p w o e w v l
|
||||||
|
p f y n f f f c n b t ? k s p p p w o e w v d
|
||||||
|
p f s n f y f c n b t ? s k w p p w o e w v d
|
||||||
|
p k y n f s f c n b t ? k k p w p w o e w v d
|
||||||
|
p f y n f f f c n b t ? k s w w p w o e w v d
|
||||||
|
p f s e f s f c n b t ? s k p w p w o e w v d
|
||||||
|
p f y n f s f c n b t ? k s p p p w o e w v p
|
||||||
|
p x s n f f f c n b t ? s k p p p w o e w v l
|
||||||
|
p x s n f f f c n b t ? k s p w p w o e w v l
|
||||||
|
p x s e f f f c n b t ? k k p w p w o e w v p
|
||||||
|
e b s w f n f w b p e ? k k w w p w t p w s g
|
||||||
|
p x s e f y f c n b t ? s s p w p w o e w v l
|
||||||
|
p x y e f f f c n b t ? s k w p p w o e w v d
|
||||||
|
p f s n f f f c n b t ? k k w w p w o e w v p
|
||||||
|
p k s n f s f c n b t ? k k p p p w o e w v d
|
||||||
|
p x y e f f f c n b t ? k k w p p w o e w v p
|
||||||
|
p x y e f f f c n b t ? k s w p p w o e w v l
|
||||||
|
p f s n f f f c n b t ? k k w p p w o e w v l
|
||||||
|
p x s n f y f c n b t ? s s w w p w o e w v p
|
||||||
|
p x s n f f f c n b t ? k k p w p w o e w v p
|
||||||
|
p f y n f y f c n b t ? k s p w p w o e w v d
|
||||||
|
p f s n f f f c n b t ? k s p p p w o e w v l
|
||||||
|
p f y e f s f c n b t ? k k w p p w o e w v l
|
||||||
|
p f s n f f f c n b t ? s s w w p w o e w v p
|
||||||
|
p x y e f y f c n b t ? s s p p p w o e w v l
|
||||||
|
e k f g f n f w b g e ? k k w w p w t p w s g
|
||||||
|
p x y e f s f c n b t ? k s w w p w o e w v l
|
||||||
|
p f y e f y f c n b t ? s s w w p w o e w v d
|
||||||
|
p f s e f y f c n b t ? s s p w p w o e w v p
|
||||||
|
p f y n f s f c n b t ? s k p w p w o e w v d
|
||||||
|
p x y e f y f c n b t ? s s p p p w o e w v p
|
||||||
|
p f y e f f f c n b t ? s k w w p w o e w v p
|
||||||
|
p f y n f f f c n b t ? s s w p p w o e w v d
|
||||||
|
p k y n f y f c n b t ? k k p p p w o e w v l
|
||||||
|
p f y e f s f c n b t ? k k p p p w o e w v l
|
||||||
|
p f y e f f f c n b t ? s s w w p w o e w v l
|
||||||
|
p f y e f y f c n b t ? s k p w p w o e w v p
|
||||||
|
p f y e f f f c n b t ? s s p p p w o e w v p
|
||||||
|
e x f w f n f w b p e ? k s w w p w t p w n g
|
||||||
|
e x f g f n f w b p e ? s k w w p w t p w n g
|
||||||
|
p x s n f y f c n b t ? k k p w p w o e w v p
|
||||||
|
p k s e f y f c n b t ? k s p p p w o e w v p
|
||||||
|
p f y n f y f c n b t ? k k w w p w o e w v d
|
||||||
|
p k y n f f f c n b t ? s k p w p w o e w v d
|
||||||
|
p k s e f f f c n b t ? s k p p p w o e w v p
|
||||||
|
p f y n f y f c n b t ? s s w p p w o e w v p
|
||||||
|
p f y n f s f c n b t ? k s p w p w o e w v d
|
||||||
|
p x y e f s f c n b t ? k k p p p w o e w v d
|
||||||
|
p x y e f f f c n b t ? s k p w p w o e w v d
|
||||||
|
p x s e f y f c n b t ? s k w p p w o e w v l
|
||||||
|
p f y n f y f c n b t ? k s w w p w o e w v l
|
||||||
|
p x y e f f f c n b t ? s s p w p w o e w v p
|
||||||
|
p x s n f y f c n b t ? k s w w p w o e w v p
|
||||||
|
p f y n f s f c n b t ? k k p w p w o e w v d
|
||||||
|
p x s e f s f c n b t ? k s p p p w o e w v d
|
||||||
|
p f y e f s f c n b t ? k s p p p w o e w v p
|
||||||
|
p f s n f y f c n b t ? s k p w p w o e w v d
|
||||||
|
p f y n f f f c n b t ? s k p w p w o e w v p
|
||||||
|
p f s e f y f c n b t ? k k p p p w o e w v l
|
||||||
|
p x s e f s f c n b t ? k s w p p w o e w v d
|
||||||
|
p f s e f y f c n b t ? k s w w p w o e w v d
|
||||||
|
p x s e f s f c n b t ? k s w w p w o e w v l
|
||||||
|
e k f g f n f w b p e ? k s w w p w t p w s g
|
||||||
|
p f y e f f f c n b t ? k k p w p w o e w v l
|
||||||
|
p x s n f f f c n b t ? k k p w p w o e w v d
|
||||||
|
p f s n f y f c n b t ? s s p w p w o e w v p
|
||||||
|
p x s n f f f c n b t ? s s p w p w o e w v d
|
||||||
|
p f s n f f f c n b t ? s s w w p w o e w v l
|
||||||
|
p f s n f y f c n b t ? k s p p p w o e w v p
|
||||||
|
p x y e f y f c n b t ? s k w w p w o e w v p
|
||||||
|
p f s e f s f c n b t ? k s p p p w o e w v l
|
||||||
|
p f s e f f f c n b t ? s k p w p w o e w v l
|
||||||
|
p x s e f f f c n b t ? k s w p p w o e w v d
|
||||||
|
p x s e f y f c n b t ? s k w w p w o e w v l
|
||||||
|
p x s n f y f c n b t ? k s p w p w o e w v d
|
||||||
|
p f y n f y f c n b t ? s s w w p w o e w v d
|
||||||
|
p x s e f f f c n b t ? k s w w p w o e w v p
|
||||||
|
p f s n f s f c n b t ? s s p w p w o e w v d
|
||||||
|
p k y e f f f c n b t ? s s w w p w o e w v p
|
||||||
|
e f s n f n a c b o e ? s s o o p n o p n c l
|
||||||
|
p x s e f f f c n b t ? s k w p p w o e w v d
|
||||||
|
p k y e f s f c n b t ? s s p p p w o e w v p
|
||||||
|
p f y e f f f c n b t ? s s w w p w o e w v p
|
||||||
|
p k y n f s f c n b t ? s s p p p w o e w v l
|
||||||
|
p x s e f y f c n b t ? s k p w p w o e w v p
|
||||||
|
p x s e f s f c n b t ? s s p w p w o e w v p
|
||||||
|
p x s e f f f c n b t ? s s w w p w o e w v d
|
||||||
|
e k f w f n f w b g e ? k k w w p w t p w n g
|
||||||
|
p x s n f y f c n b t ? s k w w p w o e w v l
|
||||||
|
p x y e f s f c n b t ? s k p w p w o e w v p
|
||||||
|
p k s e f f f c n b t ? k k p p p w o e w v l
|
||||||
|
p k s e f y f c n b t ? s s w p p w o e w v l
|
||||||
|
e b s w f n f w b p e ? k s w w p w t p w n g
|
||||||
|
p f s n f s f c n b t ? k k w w p w o e w v l
|
||||||
|
p x s e f y f c n b t ? s s p w p w o e w v p
|
||||||
|
p k s n f f f c n b t ? s k p p p w o e w v l
|
||||||
|
p x s e f s f c n b t ? k k p p p w o e w v l
|
||||||
|
p k y n f s f c n b t ? s s w w p w o e w v d
|
||||||
|
e k y n f n f c b w e b y y n n p w t p w y d
|
||||||
|
p f y n f y f c n b t ? s s w w p w o e w v p
|
||||||
|
e k f g f n f w b w e ? s s w w p w t p w n g
|
||||||
|
p x s e f s f c n b t ? k s w p p w o e w v p
|
||||||
|
p k s n f s f c n b t ? s k w p p w o e w v p
|
||||||
|
p k s e f y f c n b t ? s s w w p w o e w v d
|
||||||
|
p k y n f f f c n b t ? k k p w p w o e w v d
|
||||||
|
e k s w f n f w b w e ? k s w w p w t p w s g
|
||||||
|
p k s e f s f c n b t ? k k p p p w o e w v l
|
||||||
|
e k s g f n f w b p e ? k s w w p w t p w n g
|
||||||
|
p k s e f s f c n b t ? k s p w p w o e w v d
|
||||||
|
p k y n f f f c n b t ? k s w p p w o e w v l
|
||||||
|
p x y e f f f c n b t ? s s p w p w o e w v d
|
||||||
|
p k y c f m f c b y e c k y c c p w n n w c d
|
||||||
|
p f y n f s f c n b t ? s k p w p w o e w v l
|
||||||
|
e b s g f n f w b p e ? s k w w p w t p w s g
|
||||||
|
p f s n f y f c n b t ? k s p p p w o e w v d
|
||||||
|
e b s g f n f w b p e ? k k w w p w t p w s g
|
||||||
|
p c y y f n f w n y e c y y y y p y o e w c l
|
||||||
|
p k y e f f f c n b t ? k k p p p w o e w v l
|
||||||
|
e x s g t n f c b w e b s s w w p w t p w v p
|
||||||
|
e x f g f n f w b w e ? k s w w p w t p w s g
|
||||||
|
p k y n f y f c n b t ? k k p p p w o e w v d
|
||||||
|
p k y e f s f c n b t ? k k p p p w o e w v l
|
||||||
|
p f s e f s f c n b t ? k s w p p w o e w v p
|
||||||
|
p k s e f s f c n b t ? s s p p p w o e w v l
|
||||||
|
e x f g f n f w b p e ? s k w w p w t p w s g
|
||||||
|
p k y e f y f c n b t ? s s w w p w o e w v l
|
||||||
|
p k s n f y f c n b t ? k k p p p w o e w v p
|
||||||
|
p f y n f y f c n b t ? s s p p p w o e w v d
|
||||||
|
p k s n f s f c n b t ? k k w p p w o e w v p
|
||||||
|
p k s n f y f c n b t ? k s p p p w o e w v p
|
||||||
|
p k y n f s f c n b t ? k k w p p w o e w v l
|
||||||
|
e f s n f n a c b o e ? s s o o p o o p n c l
|
||||||
|
p k s n f y f c n b t ? s s p p p w o e w v p
|
||||||
|
e k s n f n f c b w e b y y n n p w t p w y p
|
||||||
|
p k y n f f f c n b t ? s k p p p w o e w v l
|
||||||
|
e k f w f n f w b g e ? s k w w p w t p w n g
|
||||||
|
e b f w f n f w b g e ? k s w w p w t p w s g
|
||||||
|
e b s w f n f w b w e ? s k w w p w t p w s g
|
||||||
|
e k s w f n f w b p e ? s k w w p w t p w s g
|
||||||
|
e x f g f n f w b p e ? k s w w p w t p w n g
|
||||||
|
p k s e f y f c n b t ? k s w w p w o e w v d
|
||||||
|
e b s w f n f w b p e ? s s w w p w t p w s g
|
||||||
|
p k y e f s f c n b t ? k s p p p w o e w v p
|
||||||
|
p x s n f y f c n b t ? k s w w p w o e w v d
|
||||||
|
p k y n f s f c n b t ? k k w w p w o e w v p
|
||||||
|
e k s n f n a c b o e ? s s o o p n o p o v l
|
||||||
|
p k s e f s f c n b t ? k s w p p w o e w v p
|
||||||
|
e k s n f n a c b y e ? s s o o p n o p n c l
|
||||||
|
p k s n f y f c n b t ? s k p w p w o e w v d
|
||||||
|
p f s n f s f c n b t ? s s p p p w o e w v l
|
||||||
|
e x y n t n f c b w e b s s w w p w t p w v p
|
||||||
|
e k s n f n a c b o e ? s s o o p n o p y c l
|
||||||
|
e k f w f n f w b p e ? k s w w p w t p w n g
|
||||||
|
e k f g f n f w b p e ? s s w w p w t p w s g
|
||||||
|
p k s e f f f c n b t ? k k w p p w o e w v p
|
||||||
|
e x s n f n a c b o e ? s s o o p o o p y v l
|
||||||
|
p k s e f s f c n b t ? k s p w p w o e w v p
|
||||||
|
e x s n f n a c b y e ? s s o o p o o p n v l
|
||||||
|
p k y n f s f c n b t ? k k p w p w o e w v p
|
||||||
|
p k s e f y f c n b t ? s s w w p w o e w v l
|
||||||
|
p k s n f s f c n b t ? s s p p p w o e w v p
|
||||||
|
e x s n f n a c b y e ? s s o o p o o p y v l
|
||||||
|
p k y n f s f c n b t ? k k w p p w o e w v d
|
||||||
|
e k s g f n f w b w e ? k k w w p w t p w n g
|
||||||
|
e k s n f n a c b y e ? s s o o p o o p n c l
|
||||||
|
e f s n f n a c b n e ? s s o o p o o p b v l
|
||||||
|
e b s w f n f w b p e ? k k w w p w t p w n g
|
||||||
|
p k s n f s f c n b t ? s s w p p w o e w v d
|
||||||
|
p k y e f f f c n b t ? k s p w p w o e w v d
|
||||||
|
e k s w f n f w b p e ? k k w w p w t p w n g
|
||||||
|
e k s n f n a c b o e ? s s o o p o o p n c l
|
||||||
|
p k s n f s f c n b t ? k k w w p w o e w v d
|
||||||
|
p k y e f f f c n b t ? s k p w p w o e w v l
|
||||||
|
p k y n f s f c n b t ? s k p w p w o e w v p
|
||||||
|
p k s n f y f c n b t ? s k p w p w o e w v p
|
||||||
|
p k s e f f f c n b t ? s s w w p w o e w v l
|
||||||
|
e b s n f n a c b n e ? s s o o p o o p o v l
|
||||||
|
e f s n f n a c b o e ? s s o o p o o p o v l
|
||||||
|
p k s n f f f c n b t ? s k w w p w o e w v p
|
||||||
|
e k s n f n a c b o e ? s s o o p n o p o c l
|
||||||
|
e x y c t n f c b w e b s s w w p w t p w v p
|
||||||
|
p k y e f s f c n b t ? s k p w p w o e w v p
|
||||||
|
p k s n f y f c n b t ? s s p p p w o e w v d
|
||||||
|
p k s e f y f c n b t ? s k p w p w o e w v d
|
||||||
|
e k s n f n a c b n e ? s s o o p n o p n c l
|
||||||
|
p k y e f f f c n b t ? k k w w p w o e w v p
|
||||||
|
p k y e f f f c n b t ? s s w w p w o e w v l
|
||||||
|
p k y e f y f c n b t ? s s p p p w o e w v p
|
||||||
|
p x s n f y f c n b t ? k k w w p w o e w v d
|
||||||
|
e f s n f n a c b o e ? s s o o p n o p b v l
|
||||||
|
e k s n f n a c b y e ? s s o o p o o p n v l
|
||||||
|
p k y e f y f c n b t ? k s p w p w o e w v l
|
||||||
|
e x s n f n a c b y e ? s s o o p n o p b v l
|
|
6465
lab/mushrooms-train.tsv
Normal file
172
lab/wzor.py
Normal file
@ -0,0 +1,172 @@
|
|||||||
|
#! /usr/bin/env python3
|
||||||
|
# -*- coding: utf-8 -*-
|
||||||
|
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
from seaborn import relplot
|
||||||
|
|
||||||
|
|
||||||
|
def safeSigmoid(x, eps=0):
|
||||||
|
y = 1.0/(1.0 + np.exp(-x))
|
||||||
|
if eps > 0:
|
||||||
|
y[y < eps] = eps
|
||||||
|
y[y > 1 - eps] = 1 - eps
|
||||||
|
return y
|
||||||
|
|
||||||
|
def h(theta, X, eps=0.0):
|
||||||
|
return safeSigmoid(X*theta, eps)
|
||||||
|
|
||||||
|
def J(h, theta, X, y):
|
||||||
|
m = len(y)
|
||||||
|
h_val = h(theta, X)
|
||||||
|
s1 = np.multiply(y, np.log(h_val))
|
||||||
|
s2 = np.multiply((1 - y), np.log(1 - h_val))
|
||||||
|
return -np.sum(s1 + s2, axis=0) / m
|
||||||
|
|
||||||
|
def dJ(h, theta, X, y):
|
||||||
|
return 1.0 / y.shape[0] * (X.T * (h(theta, X) - y))
|
||||||
|
|
||||||
|
def GD(h, fJ, fdJ, theta, X, y, alpha=0.01, eps=10**-3, maxSteps=10000):
|
||||||
|
errorCurr = fJ(h, theta, X, y)
|
||||||
|
errors = [[errorCurr, theta]]
|
||||||
|
while True:
|
||||||
|
# oblicz nowe theta
|
||||||
|
theta = theta - alpha * fdJ(h, theta, X, y)
|
||||||
|
# raportuj poziom błędu
|
||||||
|
errorCurr, errorPrev = fJ(h, theta, X, y), errorCurr
|
||||||
|
# kryteria stopu
|
||||||
|
if errorCurr > errorPrev:
|
||||||
|
raise Exception('Zbyt duży krok!')
|
||||||
|
if abs(errorPrev - errorCurr) <= eps:
|
||||||
|
break
|
||||||
|
if len(errors) > maxSteps:
|
||||||
|
break
|
||||||
|
errors.append([errorCurr, theta])
|
||||||
|
return theta, errors
|
||||||
|
|
||||||
|
def classifyBi(h, theta, X):
|
||||||
|
probs = h(theta, X)
|
||||||
|
result = np.array(probs > 0.5, dtype=int)
|
||||||
|
return result, probs
|
||||||
|
|
||||||
|
def plot_data_for_classification(X, Y, xlabel, ylabel):
|
||||||
|
fig = plt.figure(figsize=(16*.6, 9*.6))
|
||||||
|
ax = fig.add_subplot(111)
|
||||||
|
fig.subplots_adjust(left=0.1, right=0.9, bottom=0.1, top=0.9)
|
||||||
|
X = X.tolist()
|
||||||
|
Y = Y.tolist()
|
||||||
|
X1n = [x[1] for x, y in zip(X, Y) if y[0] == 0]
|
||||||
|
X1p = [x[1] for x, y in zip(X, Y) if y[0] == 1]
|
||||||
|
X2n = [x[2] for x, y in zip(X, Y) if y[0] == 0]
|
||||||
|
X2p = [x[2] for x, y in zip(X, Y) if y[0] == 1]
|
||||||
|
ax.scatter(X1n, X2n, c='r', marker='x', s=50, label='Dane')
|
||||||
|
ax.scatter(X1p, X2p, c='g', marker='o', s=50, label='Dane')
|
||||||
|
|
||||||
|
ax.set_xlabel(xlabel)
|
||||||
|
ax.set_ylabel(ylabel)
|
||||||
|
ax.margins(.05, .05)
|
||||||
|
return fig
|
||||||
|
|
||||||
|
def powerme(x1,x2,n):
|
||||||
|
X = []
|
||||||
|
for m in range(n+1):
|
||||||
|
for i in range(m+1):
|
||||||
|
X.append(np.multiply(np.power(x1,i),np.power(x2,(m-i))))
|
||||||
|
return np.hstack(X)
|
||||||
|
|
||||||
|
def plot_decision_boundary(fig, h, theta, degree):
|
||||||
|
ax = fig.axes[0]
|
||||||
|
|
||||||
|
xmin = 1860.0
|
||||||
|
xmax = 2020.0
|
||||||
|
xstep = 1.0
|
||||||
|
xspan = int((xmax - xmin) / xstep)
|
||||||
|
|
||||||
|
ymin = 0.0
|
||||||
|
ymax = 1200.0
|
||||||
|
ystep = 1.0
|
||||||
|
yspan = int((ymax - ymin) / ystep)
|
||||||
|
|
||||||
|
xx, yy = np.meshgrid(np.arange(xmin, xmax, xstep),
|
||||||
|
np.arange(ymin, ymax, ystep))
|
||||||
|
l = len(xx.ravel())
|
||||||
|
C = powerme(yy.reshape(l, 1), xx.reshape(l, 1), degree)
|
||||||
|
z = h(theta, C).reshape(yspan, xspan)
|
||||||
|
# z = classifyBi(h, theta, C)[0].reshape(yspan, xspan)
|
||||||
|
|
||||||
|
# plt.contour(xx, yy, z, levels=[0.1,0.3,0.5,0.7,0.9], colors='m', lw=3)
|
||||||
|
print(z)
|
||||||
|
plt.contour(xx, yy, z)
|
||||||
|
|
||||||
|
data = pd.read_csv('wyk/mieszkania4.tsv', sep='\t')
|
||||||
|
data['Czy blok'] = (data['Typ zabudowy'] == 'blok')
|
||||||
|
print(data.columns)
|
||||||
|
|
||||||
|
data = data[
|
||||||
|
(data['Powierzchnia w m2'] < 10000)
|
||||||
|
& (data['cena'] < 10000000)
|
||||||
|
]
|
||||||
|
|
||||||
|
relplot(data=data, x='Rok budowy', y='Powierzchnia w m2', hue='Czy blok')
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# X_columns = ['cena', 'Powierzchnia w m2', 'Rok budowy']
|
||||||
|
X_columns = ['Rok budowy', 'Powierzchnia w m2']
|
||||||
|
Y_column = ['Czy blok']
|
||||||
|
|
||||||
|
data = data[X_columns + Y_column].dropna()
|
||||||
|
|
||||||
|
m = len(data)
|
||||||
|
n = len(X_columns)
|
||||||
|
|
||||||
|
X = np.matrix(np.concatenate((np.ones((m, 1)), data[X_columns].values), axis=1))
|
||||||
|
Y = np.matrix(data[Y_column].values, dtype=int)
|
||||||
|
|
||||||
|
split_point = int(0.8 * m)
|
||||||
|
|
||||||
|
X_train = X[:split_point]
|
||||||
|
X_test = X[split_point:]
|
||||||
|
Y_train = Y[:split_point]
|
||||||
|
Y_test = Y[split_point:]
|
||||||
|
|
||||||
|
thetaStartMx = np.ones((n + 1, 1))
|
||||||
|
thetaBest, errors = GD(h, J, dJ, thetaStartMx, X_train, Y_train,
|
||||||
|
alpha=0.1, eps=10**-7, maxSteps=10000)
|
||||||
|
print(thetaBest)
|
||||||
|
|
||||||
|
Y_predicted, Y_probs = classifyBi(h, thetaBest, X_test)
|
||||||
|
|
||||||
|
print(Y_predicted.sum())
|
||||||
|
print(Y_test.sum())
|
||||||
|
|
||||||
|
accuracy = np.array(Y_predicted == Y_test, dtype=int).sum() / Y_test.shape[0]
|
||||||
|
print(accuracy)
|
||||||
|
|
||||||
|
fig = plot_data_for_classification(X, Y, xlabel=u'Rok budowy', ylabel=u'Powierzchnia w m2')
|
||||||
|
plot_decision_boundary(fig, h, thetaBest, 1)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
# More dimensions
|
||||||
|
|
||||||
|
dim = 6
|
||||||
|
|
||||||
|
X_train2 = powerme(X_train[:,1], X_train[:,2], dim)
|
||||||
|
X_test2 = powerme(X_test[:,1], X_test[:,2], dim)
|
||||||
|
thetaStart2 = np.ones((X_train2.shape[1], 1))
|
||||||
|
thetaBest2, errors2 = GD(h, J, dJ, thetaStart2, X_train2, Y_train,
|
||||||
|
alpha=0.1, eps=10**-7, maxSteps=100000)
|
||||||
|
|
||||||
|
print(thetaBest2)
|
||||||
|
Y_predicted2, Y_probs2 = classifyBi(h, thetaBest2, X_test2)
|
||||||
|
|
||||||
|
print(Y_predicted2.sum())
|
||||||
|
print(Y_test.sum())
|
||||||
|
|
||||||
|
accuracy2 = np.array(Y_predicted2 == Y_test, dtype=int).sum() / Y_test.shape[0]
|
||||||
|
print(accuracy2)
|
||||||
|
|
||||||
|
fig2 = plot_data_for_classification(X, Y, xlabel=u'Rok budowy', ylabel=u'Powierzchnia w m2')
|
||||||
|
plot_decision_boundary(fig2, h, thetaBest2, dim)
|
||||||
|
plt.show()
|
992
wyk/2001_Wprowadzenie.ipynb
Normal file
42665
wyk/2002_Regresja_liniowa.ipynb
Normal file
18795
wyk/2003_Regresja_logistyczna.ipynb
Normal file
1274
wyk/2004_Metody_ewaluacji.ipynb
Normal file
1740
wyk/2005_Regresja_wielomianowa.ipynb
Normal file
1450
wyk/2006_Naiwny_klasyfikator_bayesowski.ipynb
Normal file
784
wyk/2007_KNN.ipynb
Normal file
816
wyk/2007a_Reprezentacja_danych.ipynb
Normal file
@ -0,0 +1,816 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Uczenie maszynowe UMZ 2019/2020\n",
|
||||||
|
"### 28 kwietnia 2020\n",
|
||||||
|
"# 7a. Reprezentacja danych"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Na tym wykładzie dowiemy się, w jaki sposób reprezentować różnego rodzaju dane tak, żeby można było używać ich do uczenia maszynowego."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 14,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Przydatne importy\n",
|
||||||
|
"\n",
|
||||||
|
"import ipywidgets as widgets\n",
|
||||||
|
"import matplotlib.pyplot as plt\n",
|
||||||
|
"import numpy as np\n",
|
||||||
|
"import pandas\n",
|
||||||
|
"\n",
|
||||||
|
"%matplotlib inline"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Plik *mieszkania4.tsv* zawiera dane wydobyte z serwisu *gratka.pl* dotyczące cen mieszkań w Poznaniu."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" cena Powierzchnia w m2 Liczba pokoi Garaż Liczba pięter w budynku \\\n",
|
||||||
|
"0 290386 46 2 False 5.0 \n",
|
||||||
|
"1 450000 59 2 False 3.0 \n",
|
||||||
|
"2 375000 79 3 False 16.0 \n",
|
||||||
|
"3 400000 63 3 True 2.0 \n",
|
||||||
|
"4 389285 59 3 False 13.0 \n",
|
||||||
|
"\n",
|
||||||
|
" Piętro Typ zabudowy Materiał budynku Rok budowy \\\n",
|
||||||
|
"0 parter apartamentowiec cegła 2017.0 \n",
|
||||||
|
"1 2 kamienica cegła 1902.0 \n",
|
||||||
|
"2 5 blok płyta 1990.0 \n",
|
||||||
|
"3 2 blok cegła 2009.0 \n",
|
||||||
|
"4 12 blok NaN NaN \n",
|
||||||
|
"\n",
|
||||||
|
" opis \n",
|
||||||
|
"0 Polecam mieszkanie 2 pokojowe o metrażu 46,68 ... \n",
|
||||||
|
"1 Ekskluzywna oferta - tylko u nas! Projekt arch... \n",
|
||||||
|
"2 Polecam do kupna przestronne mieszkanie trzypo... \n",
|
||||||
|
"3 Dla rodziny albo pod wynajem. Świetna lokaliza... \n",
|
||||||
|
"4 NaN \n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# Wczytanie danych (mieszkania) przy pomocy biblioteki pandas\n",
|
||||||
|
"\n",
|
||||||
|
"alldata = pandas.read_csv(\n",
|
||||||
|
" 'mieszkania4.tsv', header=0, sep='\\t',\n",
|
||||||
|
" usecols=['cena', 'Powierzchnia w m2', 'Liczba pokoi', 'Garaż', 'Liczba pięter w budynku', 'Piętro', 'Typ zabudowy', 'Materiał budynku', 'Rok budowy', 'opis'])\n",
|
||||||
|
"\n",
|
||||||
|
"print(alldata[:5])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Jak widać powyżej, w pliku *mieszkania4.tsv* znajdują się dane różnych typów:\n",
|
||||||
|
"* dane numeryczne (po prostu liczby):\n",
|
||||||
|
" * cena\n",
|
||||||
|
" * powierzchnia w m<sup>2</sup>\n",
|
||||||
|
" * liczba pokoi\n",
|
||||||
|
"* dane częściowo numeryczne (liczby oraz wartości specjalne):\n",
|
||||||
|
" * liczba pięter w budynku\n",
|
||||||
|
" * piętro\n",
|
||||||
|
" * rok budowy\n",
|
||||||
|
"* dane boole'owskie (prawda/fałsz):\n",
|
||||||
|
" * garaż\n",
|
||||||
|
"* dane kategoryczne (wybór jednej z kilku kategorii):\n",
|
||||||
|
" * typ zabudowy\n",
|
||||||
|
"* dane tekstowe (dowolny tekst):\n",
|
||||||
|
" * opis"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Algorytmy uczenia maszynowego działają na danych liczbowych. Z tego powodu musimy znaleźć właściwy sposób reprezentowania pozostałych danych."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Dane numeryczne"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Dane numeryczne to takie, które są liczbami. W większości przypadków możemy na nich operować bezpośrednio. Przykładem takich danych jest kolumna *Powierzchnia w m2* z powyższego przykładu:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 16,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"[ 46 59 79 63 90 66 32 38 68 43 185 64\n",
|
||||||
|
" 165 71 73 51 70 48 42 33 203 88 41 31\n",
|
||||||
|
" 45 62 60 295 53 84 170 56 47 228 44 67\n",
|
||||||
|
" 49 37 87 36 55 57 118 65 30 28 230 54\n",
|
||||||
|
" 52 95 50 26 171 282 77 40 150 300 39 145\n",
|
||||||
|
" 370 140 225 29 61 135 27 270 177 85 92 132\n",
|
||||||
|
" 75 200 74 219 220 96 235 20 153 318 104 58\n",
|
||||||
|
" 72 117 189 81 111 35 280 141 195 120 250 97\n",
|
||||||
|
" 154 114 76 287 34 180 160 176 148 98 217 86\n",
|
||||||
|
" 260 198 78 183 80 163 82 100 156 320 89 103\n",
|
||||||
|
" 159 125 340 149 175 237 110 182 186 106 233 197\n",
|
||||||
|
" 136 162 157 240 211 83 196 69 102 91 108 130\n",
|
||||||
|
" 510 143 1200 178 226 190 151 138 161 142 683 146\n",
|
||||||
|
" 94 109 263 112 855 376 218 113 215 264 139 129\n",
|
||||||
|
" 167 600 24 174 296 315 232 298 330 93 301 127\n",
|
||||||
|
" 290 275 375 124 252 173 158 25 269 128 192 155\n",
|
||||||
|
" 99 126 147 288 119 206 105 224 346 339 204 1100\n",
|
||||||
|
" 392 243 101 18 202 205 107 199 137 134 144 216\n",
|
||||||
|
" 172 239 116 364 121 23 267 369 11930 122 400 209\n",
|
||||||
|
" 210 268 500 123 245 15 22 335 262 438 307 184\n",
|
||||||
|
" 354 249 431 214 164 328 800 16 229 152 650 241\n",
|
||||||
|
" 187 276 297 443 353 360 350 213 19 265]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(pandas.unique(alldata['Powierzchnia w m2']))\n",
|
||||||
|
"\n",
|
||||||
|
"# (funkcja `pandas.unique` służy do pomijania duplikatów wartości)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Czasami w danej kolumnie oprócz liczb występują również inne wartości. Przykładem takiej cechy może być *Piętro*:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"['parter' '2' '5' '12' '1' '3' nan '8' '4' '16' '7' '6' 'poddasze' '9'\n",
|
||||||
|
" '11' '13' '14' '10' '15' 'niski parter']\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(pandas.unique(alldata['Piętro']))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Jak widać powyżej, tutaj oprócz liczb pojawiają się pewne tekstowe wartości specjalne, takie jak `parter`, `poddasze` czy `niski parter`."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Takie wartości należy zamienić na liczby. Jak?\n",
|
||||||
|
"* Wydaje się, że `parter` czy `niski parter` można z powodzeniem potraktować jako piętro „zerowe” i zamienić na `0`.\n",
|
||||||
|
"* Z poddaszem sytuacja nie jest już tak oczywista. Czy mają Państwo jakieś propozycje?\n",
|
||||||
|
" * Może zamienić `poddasze` na wartość NaN (zobacz poniżej)?\n",
|
||||||
|
" * Może wykorzystać w tym celu wartość z sąsiedniej kolumny *Liczba pięter w budynku*?"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Można w tym celu wykorzystać funkcje [apply](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.apply.html?highlight=apply#pandas.DataFrame.apply) i [to_numeric](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.to_numeric.html) z biblioteki `pandas`."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 18,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Przed zamianą:\n",
|
||||||
|
"122 1\n",
|
||||||
|
"123 2\n",
|
||||||
|
"124 poddasze\n",
|
||||||
|
"125 5\n",
|
||||||
|
"126 parter\n",
|
||||||
|
"127 3\n",
|
||||||
|
"Name: Piętro, dtype: object\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print('Przed zamianą:')\n",
|
||||||
|
"print(alldata['Piętro'][122:128])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 19,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"Po zamianie:\n",
|
||||||
|
"122 1.0\n",
|
||||||
|
"123 2.0\n",
|
||||||
|
"124 NaN\n",
|
||||||
|
"125 5.0\n",
|
||||||
|
"126 0.0\n",
|
||||||
|
"127 3.0\n",
|
||||||
|
"Name: Piętro, dtype: float64\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# Zamiana wartości 'parter' i 'niski parter' w kolumnie 'Piętro' na 0.\n",
|
||||||
|
"alldata['Piętro'] = alldata['Piętro'].apply(lambda x: 0 if x in ['parter', 'niski parter'] else x)\n",
|
||||||
|
"\n",
|
||||||
|
"# Zamiana wszystkich wartości w kolumnie 'Piętro' na numeryczne.\n",
|
||||||
|
"# Parametr errors='coerce' powoduje, że napotkane nieliczbowe wartości będą zamieniane na NaN.\n",
|
||||||
|
"alldata['Piętro'] = alldata['Piętro'].apply(pandas.to_numeric, errors='coerce')\n",
|
||||||
|
"\n",
|
||||||
|
"print()\n",
|
||||||
|
"print('Po zamianie:')\n",
|
||||||
|
"print(alldata['Piętro'][122:128])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"### Wartości NaN"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Wartość NaN (zob. też na [Wikipedii](https://pl.wikipedia.org/wiki/NaN)) – to wartość numeryczna oznaczająca „nie-liczbę”, „wartość niezdefiniowaną”, np. niezdefiniowany wynik działania lub brak danych:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 20,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"nan\n",
|
||||||
|
"nan\n",
|
||||||
|
"nan\n",
|
||||||
|
"nan\n"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"name": "stderr",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"<ipython-input-20-d4d317707dde>:1: RuntimeWarning: invalid value encountered in sqrt\n",
|
||||||
|
" print(np.sqrt(-1)) # niezdefiniowany wynik działania (pierwiastek z liczby ujemnej)\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print(np.sqrt(-1)) # niezdefiniowany wynik działania (pierwiastek z liczby ujemnej)\n",
|
||||||
|
"\n",
|
||||||
|
"print(alldata['Piętro'][14]) # brak danych na temat piętra w rekordzie 14.\n",
|
||||||
|
"\n",
|
||||||
|
"# Jak uzyskać wartość NaN?\n",
|
||||||
|
"print(float('NaN'))\n",
|
||||||
|
"print(np.nan)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Co można zrobić z wartością NaN?\n",
|
||||||
|
"* Czasami można wartość NaN zamienić na `0`, np. być może w kolumnie „przychód” wartość NaN oznacza brak przychodu. Należy jednak być z tym ostrożnym. **W większości przypadków wstawienie 0 zamiast NaN będzie niepoprawne**, np. „rok 0” to nie to samo co „rok nieznany”. Nawet w kolumnie „cena” wartość NaN raczej oznacza, że cena jest nieznana, a to przecież nie to samo, co „cena równa 0 zł”.\n",
|
||||||
|
"* **Najbezpieczniej jest usunąć cały rekord (wiersz), który zawiera jakąkolwiek wartość NaN**. Należy przy tym pamiętać, że pozbywamy się w ten sposób (być może wartościowych) danych. Jest to istotne zwłaszcza wtedy, gdy nasze dane zawierają dużo wartości niezdefiniowanych.\n",
|
||||||
|
"* Wartość NaN można też zamienić na średnią, medianę, modę itp. z pozostałych wartości w zbiorze danych. To dobra opcja, jeżeli usunięcie całych wierszy zawierających NaN pozbawiłoby nas zbyt wielu rekordów.\n",
|
||||||
|
"* Można użyć też bardziej zaawansowanych technik, np. [MICE](https://stats.stackexchange.com/questions/421545/multiple-imputation-by-chained-equations-mice-explained) czy KNN."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Przydatne artykuły na temat usuwania wartości niezdefiniowanych ze zbioru danych:\n",
|
||||||
|
"* [Working with missing data in machine learning](https://towardsdatascience.com/working-with-missing-data-in-machine-learning-9c0a430df4ce)\n",
|
||||||
|
"* [What’s the best way to handle NaN values?](https://towardsdatascience.com/whats-the-best-way-to-handle-nan-values-62d50f738fc)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Biblioteka `pandas` dostarcza narzędzi do automatycznego usuwania wartości NaN: [dropna](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 21,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Liczba rekordów przed usunięciem NaN: 4938\n",
|
||||||
|
"Liczba rekordów po usunięciu NaN: 888\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print('Liczba rekordów przed usunięciem NaN:', len(alldata))\n",
|
||||||
|
"\n",
|
||||||
|
"alldata = alldata.dropna() # usunięcie rekordów zawierających NaN\n",
|
||||||
|
"\n",
|
||||||
|
"print('Liczba rekordów po usunięciu NaN:', len(alldata))"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Dane boole'owskie"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"W przypadku danych typu prawda/fałsz, wystarczy zamienić wartości `True` na `1`, a `False` na `0`:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 22,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Przed zamianą:\n",
|
||||||
|
"0 False\n",
|
||||||
|
"1 False\n",
|
||||||
|
"2 False\n",
|
||||||
|
"3 True\n",
|
||||||
|
"13 False\n",
|
||||||
|
" ... \n",
|
||||||
|
"4909 False\n",
|
||||||
|
"4917 True\n",
|
||||||
|
"4918 False\n",
|
||||||
|
"4920 False\n",
|
||||||
|
"4937 False\n",
|
||||||
|
"Name: Garaż, Length: 888, dtype: bool\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"print('Przed zamianą:')\n",
|
||||||
|
"print(alldata['Garaż'])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 23,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"\n",
|
||||||
|
"Po zamianie:\n",
|
||||||
|
"0 0\n",
|
||||||
|
"1 0\n",
|
||||||
|
"2 0\n",
|
||||||
|
"3 1\n",
|
||||||
|
"13 0\n",
|
||||||
|
" ..\n",
|
||||||
|
"4909 0\n",
|
||||||
|
"4917 1\n",
|
||||||
|
"4918 0\n",
|
||||||
|
"4920 0\n",
|
||||||
|
"4937 0\n",
|
||||||
|
"Name: Garaż, Length: 888, dtype: int64\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"alldata['Garaż'] = alldata['Garaż'].apply(lambda x: 1 if x == True else 0)\n",
|
||||||
|
"\n",
|
||||||
|
"print()\n",
|
||||||
|
"print('Po zamianie:')\n",
|
||||||
|
"print(alldata['Garaż'])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Dane kategoryczne"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"O danych kategorycznych mówimy, jeżeli dane mogą przyjmować wartości ze skończonej listy („kategorii”), np.:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 27,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"['apartamentowiec', 'kamienica', 'blok', 'dom wielorodzinny/szeregowiec', 'plomba']\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# \"Typ zabudowy\" może przyjmować jedną z następujących wartości:\n",
|
||||||
|
"\n",
|
||||||
|
"typ_zabudowy_values = list(pandas.unique(alldata['Typ zabudowy']))\n",
|
||||||
|
"\n",
|
||||||
|
"print(typ_zabudowy_values)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 28,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"['cegła', 'płyta', 'inne', 'pustak', 'silikat', 'beton']\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# \"Materiał budynku\" może przyjmować jedną z następujących wartości:\n",
|
||||||
|
"\n",
|
||||||
|
"material_budynku_values = list(pandas.unique(alldata['Materiał budynku']))\n",
|
||||||
|
"\n",
|
||||||
|
"print(material_budynku_values)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Cechę kategoryczną można rozbić na skończoną liczbę cech boole'owskich:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 29,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"# Skopiujmy dane, żeby przedstawić 2 alternatywne rozwiązania\n",
|
||||||
|
"\n",
|
||||||
|
"alldata_1 = alldata.copy()\n",
|
||||||
|
"alldata_2 = alldata.copy()"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 30,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"Nowo utworzone kolumny (cechy boole'owskie):\n",
|
||||||
|
"['Czy apartamentowiec?', 'Czy kamienica?', 'Czy blok?', 'Czy dom wielorodzinny/szeregowiec?', 'Czy plomba?']\n",
|
||||||
|
"\n",
|
||||||
|
" Typ zabudowy Czy apartamentowiec? Czy kamienica? \\\n",
|
||||||
|
"0 apartamentowiec True False \n",
|
||||||
|
"1 kamienica False True \n",
|
||||||
|
"2 blok False False \n",
|
||||||
|
"3 blok False False \n",
|
||||||
|
"13 blok False False \n",
|
||||||
|
"... ... ... ... \n",
|
||||||
|
"4909 apartamentowiec True False \n",
|
||||||
|
"4917 dom wielorodzinny/szeregowiec False False \n",
|
||||||
|
"4918 blok False False \n",
|
||||||
|
"4920 dom wielorodzinny/szeregowiec False False \n",
|
||||||
|
"4937 dom wielorodzinny/szeregowiec False False \n",
|
||||||
|
"\n",
|
||||||
|
" Czy blok? Czy dom wielorodzinny/szeregowiec? Czy plomba? \n",
|
||||||
|
"0 False False False \n",
|
||||||
|
"1 False False False \n",
|
||||||
|
"2 True False False \n",
|
||||||
|
"3 True False False \n",
|
||||||
|
"13 True False False \n",
|
||||||
|
"... ... ... ... \n",
|
||||||
|
"4909 False False False \n",
|
||||||
|
"4917 False True False \n",
|
||||||
|
"4918 True False False \n",
|
||||||
|
"4920 False True False \n",
|
||||||
|
"4937 False True False \n",
|
||||||
|
"\n",
|
||||||
|
"[888 rows x 6 columns]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"# Rozwiązanie 1\n",
|
||||||
|
"\n",
|
||||||
|
"select_column_names = []\n",
|
||||||
|
"for typ_zabudowy in typ_zabudowy_values:\n",
|
||||||
|
" new_column_name = 'Czy {}?'.format(typ_zabudowy)\n",
|
||||||
|
" alldata_1[new_column_name] = (alldata_1['Typ zabudowy'] == typ_zabudowy)\n",
|
||||||
|
" select_column_names.append(new_column_name)\n",
|
||||||
|
"\n",
|
||||||
|
"print(\"Nowo utworzone kolumny (cechy boole'owskie):\")\n",
|
||||||
|
"print(select_column_names)\n",
|
||||||
|
"\n",
|
||||||
|
"select_column_names = ['Typ zabudowy'] + select_column_names\n",
|
||||||
|
"\n",
|
||||||
|
"print()\n",
|
||||||
|
"\n",
|
||||||
|
"print(alldata_1[select_column_names])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Nie trzeba tego robić ręcznie. Można do tego celu użyć funkcji [get_dummies](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html) z biblioteki `pandas`:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 31,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" cena Powierzchnia w m2 Liczba pokoi Garaż Liczba pięter w budynku \\\n",
|
||||||
|
"0 290386 46 2 0 5.0 \n",
|
||||||
|
"1 450000 59 2 0 3.0 \n",
|
||||||
|
"2 375000 79 3 0 16.0 \n",
|
||||||
|
"3 400000 63 3 1 2.0 \n",
|
||||||
|
"13 450000 64 3 0 4.0 \n",
|
||||||
|
"... ... ... ... ... ... \n",
|
||||||
|
"4909 141300 46 2 0 1.0 \n",
|
||||||
|
"4917 710000 120 4 1 1.0 \n",
|
||||||
|
"4918 858000 120 5 0 3.0 \n",
|
||||||
|
"4920 399000 69 3 0 2.0 \n",
|
||||||
|
"4937 127900 36 2 0 2.0 \n",
|
||||||
|
"\n",
|
||||||
|
" Piętro Rok budowy opis \\\n",
|
||||||
|
"0 0.0 2017.0 Polecam mieszkanie 2 pokojowe o metrażu 46,68 ... \n",
|
||||||
|
"1 2.0 1902.0 Ekskluzywna oferta - tylko u nas! Projekt arch... \n",
|
||||||
|
"2 5.0 1990.0 Polecam do kupna przestronne mieszkanie trzypo... \n",
|
||||||
|
"3 2.0 2009.0 Dla rodziny albo pod wynajem. Świetna lokaliza... \n",
|
||||||
|
"13 2.0 1992.0 Witam,Mam na imię Jędrzej i w biurze Platan po... \n",
|
||||||
|
"... ... ... ... \n",
|
||||||
|
"4909 0.0 2014.0 !!! Apartamenty w Lusówku oddawane w stanie de... \n",
|
||||||
|
"4917 0.0 2013.0 Sprzedam lokal mieszkalny odrębna własność w b... \n",
|
||||||
|
"4918 3.0 1993.0 Polecam do kupna mieszkanie 5 pokojowe o pow. ... \n",
|
||||||
|
"4920 1.0 2008.0 Przestronne mieszkanie z pięknym widokiem!Dwup... \n",
|
||||||
|
"4937 2.0 2018.0 Sprzedaż nowego mieszkania w FAŁKOWIE - Osiedl... \n",
|
||||||
|
"\n",
|
||||||
|
" Typ zabudowy_apartamentowiec Typ zabudowy_blok \\\n",
|
||||||
|
"0 1 0 \n",
|
||||||
|
"1 0 0 \n",
|
||||||
|
"2 0 1 \n",
|
||||||
|
"3 0 1 \n",
|
||||||
|
"13 0 1 \n",
|
||||||
|
"... ... ... \n",
|
||||||
|
"4909 1 0 \n",
|
||||||
|
"4917 0 0 \n",
|
||||||
|
"4918 0 1 \n",
|
||||||
|
"4920 0 0 \n",
|
||||||
|
"4937 0 0 \n",
|
||||||
|
"\n",
|
||||||
|
" Typ zabudowy_dom wielorodzinny/szeregowiec Typ zabudowy_kamienica \\\n",
|
||||||
|
"0 0 0 \n",
|
||||||
|
"1 0 1 \n",
|
||||||
|
"2 0 0 \n",
|
||||||
|
"3 0 0 \n",
|
||||||
|
"13 0 0 \n",
|
||||||
|
"... ... ... \n",
|
||||||
|
"4909 0 0 \n",
|
||||||
|
"4917 1 0 \n",
|
||||||
|
"4918 0 0 \n",
|
||||||
|
"4920 1 0 \n",
|
||||||
|
"4937 1 0 \n",
|
||||||
|
"\n",
|
||||||
|
" Typ zabudowy_plomba Materiał budynku_beton Materiał budynku_cegła \\\n",
|
||||||
|
"0 0 0 1 \n",
|
||||||
|
"1 0 0 1 \n",
|
||||||
|
"2 0 0 0 \n",
|
||||||
|
"3 0 0 1 \n",
|
||||||
|
"13 0 0 1 \n",
|
||||||
|
"... ... ... ... \n",
|
||||||
|
"4909 0 0 1 \n",
|
||||||
|
"4917 0 0 1 \n",
|
||||||
|
"4918 0 0 1 \n",
|
||||||
|
"4920 0 0 1 \n",
|
||||||
|
"4937 0 0 1 \n",
|
||||||
|
"\n",
|
||||||
|
" Materiał budynku_inne Materiał budynku_pustak Materiał budynku_płyta \\\n",
|
||||||
|
"0 0 0 0 \n",
|
||||||
|
"1 0 0 0 \n",
|
||||||
|
"2 0 0 1 \n",
|
||||||
|
"3 0 0 0 \n",
|
||||||
|
"13 0 0 0 \n",
|
||||||
|
"... ... ... ... \n",
|
||||||
|
"4909 0 0 0 \n",
|
||||||
|
"4917 0 0 0 \n",
|
||||||
|
"4918 0 0 0 \n",
|
||||||
|
"4920 0 0 0 \n",
|
||||||
|
"4937 0 0 0 \n",
|
||||||
|
"\n",
|
||||||
|
" Materiał budynku_silikat \n",
|
||||||
|
"0 0 \n",
|
||||||
|
"1 0 \n",
|
||||||
|
"2 0 \n",
|
||||||
|
"3 0 \n",
|
||||||
|
"13 0 \n",
|
||||||
|
"... ... \n",
|
||||||
|
"4909 0 \n",
|
||||||
|
"4917 0 \n",
|
||||||
|
"4918 0 \n",
|
||||||
|
"4920 0 \n",
|
||||||
|
"4937 0 \n",
|
||||||
|
"\n",
|
||||||
|
"[888 rows x 19 columns]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"alldata_2 = pandas.get_dummies(alldata_2, columns=['Typ zabudowy', 'Materiał budynku'])\n",
|
||||||
|
"\n",
|
||||||
|
"print(alldata_2)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Zwróćmy uwagę, że dzięki użyciu `get_dummies` nowe kolumny zostały utworzone i nazwane automatycznie, nie trzeba też już ręcznie konwertować wartości boole'owskich do numerycznych."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Funkcja `get_dummies` do określenia, na ile i jakich kolumn podzielić daną kolumnę kategoryczną, używa bieżącej zawartości tabeli. Dlatego należy jej użyć przed dokonaniem podziału na zbiory uczący i testowy.\n",
|
||||||
|
"\n",
|
||||||
|
"Więcej na ten temat można przeczytać w artykule [How to use pandas.get_dummies with the test set](http://fastml.com/how-to-use-pd-dot-get-dummies-with-the-test-set)."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"## Dane tekstowe"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Przetwarzanie danych tekstowych to szeroki temat, którym można zapełnić cały wykład. Dlatego tutaj przedstawię tylko najważniejsze metody."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Możemy na przykład tworzyć cechy sprawdzające występowanie poszczególnych wyrazów lub ciągów znaków w tekście:"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 15,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" nowe_w_opisie opis\n",
|
||||||
|
"0 True Polecam mieszkanie 2 pokojowe o metrażu 46,68 ...\n",
|
||||||
|
"1 False Ekskluzywna oferta - tylko u nas! Projekt arch...\n",
|
||||||
|
"2 False Polecam do kupna przestronne mieszkanie trzypo...\n",
|
||||||
|
"3 False Dla rodziny albo pod wynajem. Świetna lokaliza...\n",
|
||||||
|
"13 False Witam,Mam na imię Jędrzej i w biurze Platan po...\n",
|
||||||
|
"... ... ...\n",
|
||||||
|
"4920 True Przestronne mieszkanie z pięknym widokiem!Dwup...\n",
|
||||||
|
"4925 True BEZ 2% PCC, BEZ PROWIZJI. Nowe mieszkanie 48,6...\n",
|
||||||
|
"4928 True Polecam do sprzedaży słoneczne mieszkanie dwup...\n",
|
||||||
|
"4934 False OKAZJA!! LUKSUSOWY APARTAMENT W SĄSIEDZTWIE PA...\n",
|
||||||
|
"4937 True Sprzedaż nowego mieszkania w FAŁKOWIE - Osiedl...\n",
|
||||||
|
"\n",
|
||||||
|
"[1333 rows x 2 columns]\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"alldata['nowe_w_opisie'] = alldata['opis'].apply(lambda x: True if 'nowe' in x.lower() else False)\n",
|
||||||
|
"print(alldata[['nowe_w_opisie', 'opis']])"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Można też zamienić tekst na wektory używając algorytmów TF–IDF, Word2Vec lub podobnych."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"Ciekawy artykuł na temat przygotowywania danych tekstowych do uczenia maszynowego można znaleźć na przykład tutaj: https://machinelearningmastery.com/prepare-text-data-machine-learning-scikit-learn/"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"celltoolbar": "Slideshow",
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.3"
|
||||||
|
},
|
||||||
|
"livereveal": {
|
||||||
|
"start_slideshow_at": "selected",
|
||||||
|
"theme": "amu"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
808
wyk/2008_Uczenie_nienadzorowane.ipynb
Normal file
951
wyk/2009_Sieci_neuronowe.ipynb
Normal file
1073
wyk/2010_Propagacja_wsteczna.ipynb
Normal file
1772
wyk/2011_Wielowarstwowe_sieci_neuronowe.ipynb
Normal file
254
wyk/2012_RNN.ipynb
Normal file
851
wyk/2013_CNN.ipynb
Normal file
411
wyk/2014_Autoencoder.ipynb
Normal file
@ -0,0 +1,411 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## Uczenie maszynowe UMZ 2019/2020\n",
|
||||||
|
"### 16 czerwca 2020\n",
|
||||||
|
"# 14. Autoencoder. Tłumaczenie neuronowe"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## 14.1. Autoencoder"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"* Uczenie nienadzorowane\n",
|
||||||
|
"* Dane: zbiór nieanotowanych przykładów uczących $\\{ x^{(1)}, x^{(2)}, x^{(3)}, \\ldots \\}$, $x^{(i)} \\in \\mathbb{R}^{n}$"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Autoencoder (encoder-decoder)\n",
|
||||||
|
"\n",
|
||||||
|
"Sieć neuronowa taka, że:\n",
|
||||||
|
"* warstwa wejściowa ma $n$ neuronów\n",
|
||||||
|
"* warstwa wyjściowa ma $n$ neuronów\n",
|
||||||
|
"* warstwa środkowa ma $k < n$ neuronów\n",
|
||||||
|
"* $y^{(i)} = x^{(i)}$ dla każdego $i$"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"<img style=\"margin: auto\" width=\"60%\" src=\"http://ufldl.stanford.edu/tutorial/images/Autoencoder636.png\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Co otrzymujemy dzięki takiej sieci?\n",
|
||||||
|
"\n",
|
||||||
|
"* $y^{(i)} = x^{(i)} \\; \\Longrightarrow \\;$ Autoencoder próbuje nauczyć się funkcji $h(x) \\approx x$, czyli funkcji identycznościowej.\n",
|
||||||
|
"* Warstwy środkowe mają mniej neuronów niż warstwy zewnętrzne, więc żeby to osiągnąć, sieć musi znaleźć bardziej kompaktową (tu: $k$-wymiarową) reprezentację informacji zawartej w wektorach $x_{(i)}$.\n",
|
||||||
|
"* Otrzymujemy metodę kompresji danych."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Innymi słowy:\n",
|
||||||
|
"* Ograniczenia nałożone na reprezentację danych w warstwie ukrytej pozwala na „odkrycie” pewnej **struktury** w danych.\n",
|
||||||
|
"* _Decoder_ musi odtworzyć do pierwotnej postaci reprezentację danych skompresowaną przez _encoder_."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"<img style=\"margin: auto\" width=\"70%\" src=\"https://upload.wikimedia.org/wikipedia/commons/2/28/Autoencoder_structure.png\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"<img style=\"margin: auto\" width=\"70%\" src=\"autoencoder_schema.jpg\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"* Całkowita liczba warstw w sieci autoencodera może być większa niż 3.\n",
|
||||||
|
"* Jako funkcji kosztu na ogół używa się błędu średniokwadratowego (_mean squared error_, MSE) lub entropii krzyżowej (_binary crossentropy_).\n",
|
||||||
|
"* Autoencoder może wykryć ciekawe struktury w danych nawet jeżeli $k \\geq n$, jeżeli na sieć nałoży się inne ograniczenia.\n",
|
||||||
|
"* W wyniku działania autoencodera uzyskujemy na ogół kompresję **stratną**."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Autoencoder a PCA\n",
|
||||||
|
"\n",
|
||||||
|
"Widzimy, że autoencoder można wykorzystać do redukcji liczby wymiarów. Podobną rolę pełni poznany na jednym z poprzednich wykładów algorytm PCA (analiza głównych składowych, _principal component analysis_). Faktycznie, jeżeli zastosujemy autoencoder z liniowymi funkcjami aktywacji i pojedynczą sigmoidalną warstwą ukrytą, to na podstawie uzyskanych wag można odtworzyć główne składowe używając rozkładu według wartości osobliwych (_singular value decomposition_, SVD)."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Autoencoder odszumiający\n",
|
||||||
|
"\n",
|
||||||
|
"Jeżeli na wejściu zamiast „czystych” danych użyjemy danych zaszumionych, to otrzymamy sieć, która może usuwać szum z danych:\n",
|
||||||
|
"\n",
|
||||||
|
"<img style=\"margin: auto\" width=\"70%\" src=\"denoising_autoencoder.png\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"<img style=\"margin: auto\" width=\"70%\" src=\"denoising.png\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Autoencoder – zastosowania\n",
|
||||||
|
"\n",
|
||||||
|
"Autoencoder sprawdza się gorzej niż inne algorytmy kompresji, więc nie stosuje się go raczej jako metody kompresji danych, ale ma inne zastosowania:\n",
|
||||||
|
"* odszumianie danych\n",
|
||||||
|
"* redukcja wymiarowości\n",
|
||||||
|
"* VAE (_variational autoencoders_) – http://kvfrans.com/variational-autoencoders-explained/"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## 14.2. Word embeddings"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"_Word embeddings_ – sposoby reprezentacji słów jako wektorów liczbowych"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Znaczenie wyrazu jest reprezentowane przez sąsiednie wyrazy:\n",
|
||||||
|
"\n",
|
||||||
|
"“A word is characterized by the company it keeps.” (John R. Firth, 1957)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"* Pomysł pojawił sie jeszcze w latach 60. XX w.\n",
|
||||||
|
"* _Word embeddings_ można uzyskiwać na różne sposoby, ale dopiero w ostatnim dziesięcioleciu stało się opłacalne użycie w tym celu sieci neuronowych."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Przykład – 2 zdania: \n",
|
||||||
|
"* \"have a good day\"\n",
|
||||||
|
"* \"have a great day\"\n",
|
||||||
|
"\n",
|
||||||
|
"Słownik:\n",
|
||||||
|
"* {\"a\", \"day\", \"good\", \"great\", \"have\"}"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"* Aby wykorzystać metody uczenia maszynowego do analizy danych tekstowych, musimy je jakoś reprezentować jako liczby.\n",
|
||||||
|
"* Najprostsza metoda to wektory jednostkowe:\n",
|
||||||
|
" * \"a\" = $(1, 0, 0, 0, 0)$\n",
|
||||||
|
" * \"day\" = $(0, 1, 0, 0, 0)$\n",
|
||||||
|
" * \"good\" = $(0, 0, 1, 0, 0)$\n",
|
||||||
|
" * \"great\" = $(0, 0, 0, 1, 0)$\n",
|
||||||
|
" * \"have\" = $(0, 0, 0, 0, 1)$\n",
|
||||||
|
"* Taka metoda nie uwzględnia jednak podobieństw i różnic między znaczeniami wyrazów."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Metody uzyskiwania _word embeddings_:\n",
|
||||||
|
"* Common Bag of Words (CBOW)\n",
|
||||||
|
"* Skip Gram\n",
|
||||||
|
"\n",
|
||||||
|
"Obie opierają się na odpowiednim użyciu autoencodera."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"<img style=\"margin: auto\" width=\"90%\" src=\"we_autoencoder.png\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Common Bag of Words\n",
|
||||||
|
"\n",
|
||||||
|
"<img style=\"margin: auto\" width=\"60%\" src=\"cbow.png\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Skip Gram\n",
|
||||||
|
"\n",
|
||||||
|
"<img style=\"margin: auto\" width=\"50%\" src=\"skipgram.png\" />"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Skip Gram a CBOW\n",
|
||||||
|
"\n",
|
||||||
|
"* Skip Gram lepiej reprezentuje rzadkie wyrazy i lepiej działa, jeżeli mamy mało danych.\n",
|
||||||
|
"* CBOW jest szybszy i lepiej reprezentuje częste wyrazy."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"### Popularne modele _word embeddings_\n",
|
||||||
|
"* Word2Vec (Google)\n",
|
||||||
|
"* GloVe (Stanford)\n",
|
||||||
|
"* FastText (Facebook)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "slide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"## 14.3. Tłumaczenie neuronowe\n",
|
||||||
|
"\n",
|
||||||
|
"_Neural Machine Translation_ (NMT)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"Neuronowe tłumaczenie maszynowe również opiera się na modelu _encoder-decoder_:\n",
|
||||||
|
"* _Encoder_ koduje z języka źródłowego na abstrakcyjną reprezentację.\n",
|
||||||
|
"* _Decoder_ odkodowuje z abstrakcyjnej reprezentacji na język docelowy."
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {
|
||||||
|
"slideshow": {
|
||||||
|
"slide_type": "subslide"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"source": [
|
||||||
|
"<img style=\"margin: auto\" width=\"70%\" src=\"http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/06/Figure2_NMT_system.png\"/>"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"celltoolbar": "Slideshow",
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.3"
|
||||||
|
},
|
||||||
|
"livereveal": {
|
||||||
|
"start_slideshow_at": "selected",
|
||||||
|
"theme": "amu"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
417
wyk/2015_Uczenie_przez_wzmacnianie.ipynb
Normal file
41
wyk/Untitled.ipynb
Normal file
@ -0,0 +1,41 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 2,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": [
|
||||||
|
"import numpy as np"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.8.3"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 4
|
||||||
|
}
|
BIN
wyk/ad0.png
Normal file
After Width: | Height: | Size: 24 KiB |
BIN
wyk/ad1.png
Normal file
After Width: | Height: | Size: 35 KiB |
BIN
wyk/ad2.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
wyk/autoencoder.png
Normal file
After Width: | Height: | Size: 88 KiB |
BIN
wyk/autoencoder_schema.jpg
Normal file
After Width: | Height: | Size: 32 KiB |
100
wyk/bayes_nasty.tsv
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
0 0.7544830909519196 -0.7557810097698512
|
||||||
|
0 -0.401040192413354 0.05087719368515575
|
||||||
|
0 -0.14557860894357444 -0.9167657103778997
|
||||||
|
0 0.15606723792840116 0.7049866105111644
|
||||||
|
0 0.595321005153232 -0.3993704503800295
|
||||||
|
0 -0.21608773803320203 -0.9473358133826528
|
||||||
|
1 -0.9991678089071083 -0.8203462932941652
|
||||||
|
0 -0.29270128006691776 0.8999761729296656
|
||||||
|
0 -0.3744408488491382 0.5298017577688894
|
||||||
|
0 -0.13262908466039347 0.016485142896286442
|
||||||
|
1 -0.45382240999178936 -0.6292411536948919
|
||||||
|
1 0.8466491727357144 0.7677619536810258
|
||||||
|
0 0.5640604742334225 -0.6415301955014154
|
||||||
|
1 0.7652661495157325 0.9042394673218532
|
||||||
|
0 0.027488607545269383 -0.8561480245619784
|
||||||
|
0 0.8937874814271918 -0.568262764805403
|
||||||
|
1 0.05865567400417637 0.1271824506485506
|
||||||
|
0 0.1350578652393759 -0.8468795247716823
|
||||||
|
0 -0.03351382194744046 0.7225677368658248
|
||||||
|
0 0.031698854294282874 -0.1745522030261808
|
||||||
|
0 0.9764007293531329 0.0407596854507819
|
||||||
|
1 0.8575290920021019 0.5995196615047915
|
||||||
|
1 -0.5942919380814724 -0.9173657127389143
|
||||||
|
0 0.019297633607670894 0.7171922933333184
|
||||||
|
0 0.23496958271638224 -0.4505947779446391
|
||||||
|
0 -0.15627176851413638 -0.6255991840738957
|
||||||
|
0 -0.5436468155122751 0.7321778365594638
|
||||||
|
0 -0.0016772778866704918 0.9953499312779903
|
||||||
|
0 -0.49022669174509304 0.7643365578090109
|
||||||
|
0 0.9274390975500406 -0.16941260003761904
|
||||||
|
0 0.517483672350449 -0.9259720728025793
|
||||||
|
0 0.4993683788149732 -0.8086741166111076
|
||||||
|
1 -0.8954705171891042 -0.8352780222016363
|
||||||
|
1 -0.35723728886723927 -0.6472670626320902
|
||||||
|
0 -0.45030919789416135 -0.014680291690282399
|
||||||
|
1 -0.3149222964035554 -0.2363491678998142
|
||||||
|
0 -0.21632030129179247 0.9937719759687991
|
||||||
|
0 -0.3479296178713067 0.7754592480508431
|
||||||
|
1 -0.39993029073188713 -0.4021302940990339
|
||||||
|
0 0.22575455897529628 0.914503661895917
|
||||||
|
0 0.7221094132486976 -0.07187829685579739
|
||||||
|
1 0.8767936705571608 0.9516806200255943
|
||||||
|
1 0.2252335689492453 0.7031994893573623
|
||||||
|
0 0.742017840295591 -0.19165119600215896
|
||||||
|
1 -0.18782565699518372 -0.1408083939313467
|
||||||
|
0 -0.8222264182672563 0.17050362212981707
|
||||||
|
0 -0.1701252998869296 0.3450076829291753
|
||||||
|
0 -0.7342893613133503 0.40778605218980135
|
||||||
|
0 0.042695758461734235 -0.1484132507659468
|
||||||
|
1 0.3863429870565578 0.1571106834539837
|
||||||
|
0 -0.015388135282204507 -0.3364073902228679
|
||||||
|
0 -0.8487467820993619 0.1089427832313854
|
||||||
|
1 -0.6329015029648661 -0.7736052613400564
|
||||||
|
1 -0.858908407978868 -0.7378977770454969
|
||||||
|
1 0.6990672273176652 0.9222225234574595
|
||||||
|
0 -0.256431985135285 0.5758502205935434
|
||||||
|
0 -0.17330338780141252 0.30560812863161035
|
||||||
|
1 0.3523362003038917 0.4815180921326969
|
||||||
|
0 -0.10269592106863401 -0.7847042700361848
|
||||||
|
1 0.2559692323662084 0.048849842553034595
|
||||||
|
0 -0.8044820701681799 0.504663314011591
|
||||||
|
0 0.07877786671385811 0.9947392835524949
|
||||||
|
0 -0.8828875946641657 0.39461445063748224
|
||||||
|
0 -0.5143275957869704 0.09502394806995929
|
||||||
|
1 -0.5268239422759475 -0.11354182377636213
|
||||||
|
0 0.2946171361928087 -0.3186572090869646
|
||||||
|
0 0.7198334843462129 -0.6141975273104947
|
||||||
|
1 0.48428859765324495 0.8946857548947542
|
||||||
|
0 0.4621095070919994 -0.8924571872043978
|
||||||
|
0 0.4528371532815365 -0.5807667653397828
|
||||||
|
0 -0.09742500656072872 0.4945581379995849
|
||||||
|
1 0.777026015997778 0.3617742992147488
|
||||||
|
0 0.7791679792171657 -0.9220886356412603
|
||||||
|
0 -0.38876810387659977 0.6679551419391372
|
||||||
|
0 -0.08472697987697475 0.275319596881203
|
||||||
|
0 0.7822926875136844 0.17122659901899606
|
||||||
|
1 -0.2657068543666481 -0.06008893404720328
|
||||||
|
0 -0.6907681316607532 -0.14224587305734304
|
||||||
|
0 0.8066439746610798 -0.4207539780920342
|
||||||
|
1 0.8552075324891362 0.08669568026253027
|
||||||
|
0 0.5491129985925067 -0.6071624569600662
|
||||||
|
0 -0.9629615870383108 0.5418486267009242
|
||||||
|
1 0.718585449653875 0.2289040416265995
|
||||||
|
0 0.7097096024915686 0.15142630204453789
|
||||||
|
0 0.001183772922738191 -0.21331149786657155
|
||||||
|
0 -0.740163182486073 0.7856137973272908
|
||||||
|
0 -0.4102935448809477 0.32577864184797
|
||||||
|
0 0.2838108153224279 0.6955863026175773
|
||||||
|
1 0.5260171668336517 0.31947619877005207
|
||||||
|
1 0.39165592038557273 0.5903048315964989
|
||||||
|
1 -0.5287850882839857 -0.709598294851151
|
||||||
|
0 0.8801802111481849 0.1257963822980257
|
||||||
|
0 0.7860399993656908 0.2917387997774099
|
||||||
|
0 -0.31357941345778184 0.8173465016744779
|
||||||
|
0 -0.24706729772892544 -0.5017567368968896
|
||||||
|
0 -0.5077834677535535 0.734692375238988
|
||||||
|
1 0.9180554343925105 0.7402607565839483
|
||||||
|
0 0.7347556198277827 -0.8922440369193774
|
||||||
|
0 0.05178553367177474 0.024867950728887367
|
||||||
|
0 0.6123243631772981 -0.9310030202911994
|
|
BIN
wyk/bias2.png
Normal file
After Width: | Height: | Size: 122 KiB |
BIN
wyk/cbow.png
Normal file
After Width: | Height: | Size: 42 KiB |
20
wyk/classification.tsv
Normal file
@ -0,0 +1,20 @@
|
|||||||
|
0 -0.8014509894297421 -0.5994635333915026
|
||||||
|
0 -0.7706966545879539 0.6368117894533625
|
||||||
|
0 -0.27709533263047414 0.8256752096021349
|
||||||
|
0 0.9930555307918127 0.36630467592076577
|
||||||
|
1 -0.16225248935963799 0.4956311492381327
|
||||||
|
0 0.934855703919385 0.8549023876664064
|
||||||
|
0 -0.5145933151394193 -0.804772931556422
|
||||||
|
1 0.10024139618609662 0.018730576213300765
|
||||||
|
0 0.9713755569949907 0.16659909394686068
|
||||||
|
1 -0.07322231752678521 -0.18763566969904533
|
||||||
|
0 -0.5702785062714137 0.3522449667057965
|
||||||
|
1 0.1848842019744028 0.4173729058647151
|
||||||
|
0 0.24479522096847361 -0.7089634989586504
|
||||||
|
0 0.6236644548417194 -0.1156611626471038
|
||||||
|
0 -0.10592913601169007 -0.9980825893807068
|
||||||
|
0 -0.23607206404847436 -0.7428335400803034
|
||||||
|
0 -0.11951845657345062 -0.8219825834866892
|
||||||
|
0 0.04590771234351232 -0.7564447785519108
|
||||||
|
1 0.7967711966832445 -0.4352501064041614
|
||||||
|
1 0.8053812216632301 0.1203107620499666
|
|
BIN
wyk/contours_evaluation_optimizers.gif
Normal file
After Width: | Height: | Size: 893 KiB |
BIN
wyk/curves.jpg
Normal file
After Width: | Height: | Size: 94 KiB |
50
wyk/data-metrics.tsv
Normal file
@ -0,0 +1,50 @@
|
|||||||
|
0 -0.9410633308036449 0.46518252113944425
|
||||||
|
1 0.4700636553691919 -0.3970321538875541
|
||||||
|
1 -0.01609299859794966 0.23161453968628254
|
||||||
|
0 -0.9966154155058933 0.06419313152355421
|
||||||
|
0 0.8000009607150127 0.44133107977776875
|
||||||
|
0 0.389227379480078 -0.8415416694237676
|
||||||
|
0 -0.7786281038890375 0.2833716839963434
|
||||||
|
1 -0.10150562150521569 -0.02968754639839366
|
||||||
|
1 -0.14995353486391494 0.30921523116923866
|
||||||
|
0 0.3150219624148183 0.4186143523577863
|
||||||
|
0 -0.5542734031872467 0.9291684810885719
|
||||||
|
0 -0.44750469543445215 -0.8240387195698262
|
||||||
|
0 -0.7875312310670415 0.27475695030524894
|
||||||
|
0 0.20470154428730747 -0.8122722630746713
|
||||||
|
0 0.07472783793361693 0.8936381678688297
|
||||||
|
0 -0.6016285994197443 -0.9783927694535444
|
||||||
|
0 0.4235345463350013 -0.23977977886239832
|
||||||
|
0 0.256790496684171 -0.5587059709121811
|
||||||
|
0 -0.2172656054288027 0.8015306542483966
|
||||||
|
0 0.2009238354275602 0.9376873763906164
|
||||||
|
0 -0.8760038215191506 0.015194717659306356
|
||||||
|
0 -0.1512141038160364 -0.9575528046526418
|
||||||
|
0 -0.6378974241766098 0.35900665963616696
|
||||||
|
0 -0.6219617077011876 0.04019896541474166
|
||||||
|
0 -0.2533778634666939 -0.8576798720089458
|
||||||
|
0 -0.9398823073223508 0.806594859009744
|
||||||
|
0 -0.24161324930138606 -0.6982896600554984
|
||||||
|
0 -0.967724402993285 0.15651783268628372
|
||||||
|
0 0.9587968810951801 -0.3382309645563397
|
||||||
|
1 0.18040441263417084 -0.026706542719935777
|
||||||
|
0 -0.2403226372749332 -0.2694487472698215
|
||||||
|
0 -0.49494412803453747 -0.6833825934742561
|
||||||
|
0 -0.32266963833818574 0.6299706350061482
|
||||||
|
0 -0.716450532167108 0.7792499086149187
|
||||||
|
1 -0.5661825812948427 -0.3045016769669948
|
||||||
|
0 -0.9014952263862088 0.19697267011506714
|
||||||
|
1 0.3192734822128551 -0.3145295901019187
|
||||||
|
1 -0.4386590899062277 0.6119229005694005
|
||||||
|
0 -0.6306933372350818 0.4721301354446683
|
||||||
|
0 0.3302936606411402 -0.3047093070118343
|
||||||
|
1 -0.38049655790356285 -0.609474130471132
|
||||||
|
1 0.32069301644263426 0.17266197471996692
|
||||||
|
1 0.8349752241994568 0.4408717276862013
|
||||||
|
0 -0.26741723386938343 -0.4919294757003996
|
||||||
|
0 -0.7786699335922747 -0.47305795528791905
|
||||||
|
0 0.723410510517891 -0.010095862311693793
|
||||||
|
0 0.0902826080483603 -0.6805262097228113
|
||||||
|
0 -0.9286972617786873 0.7200430642275493
|
||||||
|
0 -0.0623197964184079 0.8187639325432745
|
||||||
|
0 -0.20572090815735944 -0.6655000969777327
|
|
97
wyk/data01.csv
Normal file
@ -0,0 +1,97 @@
|
|||||||
|
6.1101,17.592
|
||||||
|
5.5277,9.1302
|
||||||
|
8.5186,13.662
|
||||||
|
7.0032,11.854
|
||||||
|
5.8598,6.8233
|
||||||
|
8.3829,11.886
|
||||||
|
7.4764,4.3483
|
||||||
|
8.5781,12
|
||||||
|
6.4862,6.5987
|
||||||
|
5.0546,3.8166
|
||||||
|
5.7107,3.2522
|
||||||
|
14.164,15.505
|
||||||
|
5.734,3.1551
|
||||||
|
8.4084,7.2258
|
||||||
|
5.6407,0.71618
|
||||||
|
5.3794,3.5129
|
||||||
|
6.3654,5.3048
|
||||||
|
5.1301,0.56077
|
||||||
|
6.4296,3.6518
|
||||||
|
7.0708,5.3893
|
||||||
|
6.1891,3.1386
|
||||||
|
20.27,21.767
|
||||||
|
5.4901,4.263
|
||||||
|
6.3261,5.1875
|
||||||
|
5.5649,3.0825
|
||||||
|
18.945,22.638
|
||||||
|
12.828,13.501
|
||||||
|
10.957,7.0467
|
||||||
|
13.176,14.692
|
||||||
|
22.203,24.147
|
||||||
|
5.2524,-1.22
|
||||||
|
6.5894,5.9966
|
||||||
|
9.2482,12.134
|
||||||
|
5.8918,1.8495
|
||||||
|
8.2111,6.5426
|
||||||
|
7.9334,4.5623
|
||||||
|
8.0959,4.1164
|
||||||
|
5.6063,3.3928
|
||||||
|
12.836,10.117
|
||||||
|
6.3534,5.4974
|
||||||
|
5.4069,0.55657
|
||||||
|
6.8825,3.9115
|
||||||
|
11.708,5.3854
|
||||||
|
5.7737,2.4406
|
||||||
|
7.8247,6.7318
|
||||||
|
7.0931,1.0463
|
||||||
|
5.0702,5.1337
|
||||||
|
5.8014,1.844
|
||||||
|
11.7,8.0043
|
||||||
|
5.5416,1.0179
|
||||||
|
7.5402,6.7504
|
||||||
|
5.3077,1.8396
|
||||||
|
7.4239,4.2885
|
||||||
|
7.6031,4.9981
|
||||||
|
6.3328,1.4233
|
||||||
|
6.3589,-1.4211
|
||||||
|
6.2742,2.4756
|
||||||
|
5.6397,4.6042
|
||||||
|
9.3102,3.9624
|
||||||
|
9.4536,5.4141
|
||||||
|
8.8254,5.1694
|
||||||
|
5.1793,-0.74279
|
||||||
|
21.279,17.929
|
||||||
|
14.908,12.054
|
||||||
|
18.959,17.054
|
||||||
|
7.2182,4.8852
|
||||||
|
8.2951,5.7442
|
||||||
|
10.236,7.7754
|
||||||
|
5.4994,1.0173
|
||||||
|
20.341,20.992
|
||||||
|
10.136,6.6799
|
||||||
|
7.3345,4.0259
|
||||||
|
6.0062,1.2784
|
||||||
|
7.2259,3.3411
|
||||||
|
5.0269,-2.6807
|
||||||
|
6.5479,0.29678
|
||||||
|
7.5386,3.8845
|
||||||
|
5.0365,5.7014
|
||||||
|
10.274,6.7526
|
||||||
|
5.1077,2.0576
|
||||||
|
5.7292,0.47953
|
||||||
|
5.1884,0.20421
|
||||||
|
6.3557,0.67861
|
||||||
|
9.7687,7.5435
|
||||||
|
6.5159,5.3436
|
||||||
|
8.5172,4.2415
|
||||||
|
9.1802,6.7981
|
||||||
|
6.002,0.92695
|
||||||
|
5.5204,0.152
|
||||||
|
5.0594,2.8214
|
||||||
|
5.7077,1.8451
|
||||||
|
7.6366,4.2959
|
||||||
|
5.8707,7.2029
|
||||||
|
5.3054,1.9869
|
||||||
|
8.2934,0.14454
|
||||||
|
13.394,9.0551
|
||||||
|
5.4369,0.61705
|
|
17
wyk/data01_test.csv
Normal file
@ -0,0 +1,17 @@
|
|||||||
|
5.7292,0.47953
|
||||||
|
5.1884,0.20421
|
||||||
|
6.3557,0.67861
|
||||||
|
9.7687,7.5435
|
||||||
|
6.5159,5.3436
|
||||||
|
8.5172,4.2415
|
||||||
|
9.1802,6.7981
|
||||||
|
6.002,0.92695
|
||||||
|
5.5204,0.152
|
||||||
|
5.0594,2.8214
|
||||||
|
5.7077,1.8451
|
||||||
|
7.6366,4.2959
|
||||||
|
5.8707,7.2029
|
||||||
|
5.3054,1.9869
|
||||||
|
8.2934,0.14454
|
||||||
|
13.394,9.0551
|
||||||
|
5.4369,0.61705
|
|
80
wyk/data01_train.csv
Normal file
@ -0,0 +1,80 @@
|
|||||||
|
6.1101,17.592
|
||||||
|
5.5277,9.1302
|
||||||
|
8.5186,13.662
|
||||||
|
7.0032,11.854
|
||||||
|
5.8598,6.8233
|
||||||
|
8.3829,11.886
|
||||||
|
7.4764,4.3483
|
||||||
|
8.5781,12
|
||||||
|
6.4862,6.5987
|
||||||
|
5.0546,3.8166
|
||||||
|
5.7107,3.2522
|
||||||
|
14.164,15.505
|
||||||
|
5.734,3.1551
|
||||||
|
8.4084,7.2258
|
||||||
|
5.6407,0.71618
|
||||||
|
5.3794,3.5129
|
||||||
|
6.3654,5.3048
|
||||||
|
5.1301,0.56077
|
||||||
|
6.4296,3.6518
|
||||||
|
7.0708,5.3893
|
||||||
|
6.1891,3.1386
|
||||||
|
20.27,21.767
|
||||||
|
5.4901,4.263
|
||||||
|
6.3261,5.1875
|
||||||
|
5.5649,3.0825
|
||||||
|
18.945,22.638
|
||||||
|
12.828,13.501
|
||||||
|
10.957,7.0467
|
||||||
|
13.176,14.692
|
||||||
|
22.203,24.147
|
||||||
|
5.2524,-1.22
|
||||||
|
6.5894,5.9966
|
||||||
|
9.2482,12.134
|
||||||
|
5.8918,1.8495
|
||||||
|
8.2111,6.5426
|
||||||
|
7.9334,4.5623
|
||||||
|
8.0959,4.1164
|
||||||
|
5.6063,3.3928
|
||||||
|
12.836,10.117
|
||||||
|
6.3534,5.4974
|
||||||
|
5.4069,0.55657
|
||||||
|
6.8825,3.9115
|
||||||
|
11.708,5.3854
|
||||||
|
5.7737,2.4406
|
||||||
|
7.8247,6.7318
|
||||||
|
7.0931,1.0463
|
||||||
|
5.0702,5.1337
|
||||||
|
5.8014,1.844
|
||||||
|
11.7,8.0043
|
||||||
|
5.5416,1.0179
|
||||||
|
7.5402,6.7504
|
||||||
|
5.3077,1.8396
|
||||||
|
7.4239,4.2885
|
||||||
|
7.6031,4.9981
|
||||||
|
6.3328,1.4233
|
||||||
|
6.3589,-1.4211
|
||||||
|
6.2742,2.4756
|
||||||
|
5.6397,4.6042
|
||||||
|
9.3102,3.9624
|
||||||
|
9.4536,5.4141
|
||||||
|
8.8254,5.1694
|
||||||
|
5.1793,-0.74279
|
||||||
|
21.279,17.929
|
||||||
|
14.908,12.054
|
||||||
|
18.959,17.054
|
||||||
|
7.2182,4.8852
|
||||||
|
8.2951,5.7442
|
||||||
|
10.236,7.7754
|
||||||
|
5.4994,1.0173
|
||||||
|
20.341,20.992
|
||||||
|
10.136,6.6799
|
||||||
|
7.3345,4.0259
|
||||||
|
6.0062,1.2784
|
||||||
|
7.2259,3.3411
|
||||||
|
5.0269,-2.6807
|
||||||
|
6.5479,0.29678
|
||||||
|
7.5386,3.8845
|
||||||
|
5.0365,5.7014
|
||||||
|
10.274,6.7526
|
||||||
|
5.1077,2.0576
|
|
1675
wyk/data02.tsv
Normal file
335
wyk/data02_test.tsv
Normal file
@ -0,0 +1,335 @@
|
|||||||
|
325000.0 True 2 0 Rataje 47
|
||||||
|
285000.0 True 2 3 Grunwald 58
|
||||||
|
360000.0 True 3 2 Rataje 69
|
||||||
|
355000.0 True 2 2 Rataje 90
|
||||||
|
362804.0 False 3 5 Jeżyce 39
|
||||||
|
252723.0 False 2 1 Winogrady 43
|
||||||
|
285200.0 False 2 1 Winogrady 46
|
||||||
|
249641.0 False 2 0 Ogrody 54
|
||||||
|
302887.0 False 2 4 Górczyn 25
|
||||||
|
242731.0 False 2 0 Podolany 74
|
||||||
|
991380.0 False 5 1 Starołęka 94
|
||||||
|
265000.0 True 2 2 Piątkowo 70
|
||||||
|
344000.0 True 2 0 Stare 49
|
||||||
|
313000.0 True 2 4 Stare 49
|
||||||
|
315000.0 True 3 0 Stare 60
|
||||||
|
315000.0 True 3 0 Rataje 63
|
||||||
|
690000.0 True 2 1 Stare 20
|
||||||
|
465000.0 True 2 2 Wilda 49
|
||||||
|
368110.0 True 3 2 Nowe 64
|
||||||
|
282994.0 True 2 0 Nowe 55
|
||||||
|
350000.0 True 2 3 Rataje 52
|
||||||
|
780000.0 True 3 0 Grunwald 87
|
||||||
|
263000.0 True 2 0 Rataje 38
|
||||||
|
219000.0 True 2 7 Winogrady 38
|
||||||
|
250000.0 True 3 3 Rataje 53
|
||||||
|
394000.0 True 4 0 Nowe 88
|
||||||
|
535000.0 True 2 2 Centrum 55
|
||||||
|
329000.0 True 3 13 Rataje 65
|
||||||
|
192750.0 True 2 2 Nowe 55
|
||||||
|
375408.0 True 3 0 Nowe 88
|
||||||
|
649400.0 True 3 4 Nowe 50
|
||||||
|
294906.0 True 2 3 Nowe 74
|
||||||
|
291720.0 True 2 5 Stare 20
|
||||||
|
290646.0 True 2 2 Stare 80
|
||||||
|
285678.0 False 2 1 Winogrady 42
|
||||||
|
156085.0 False 2 4 Nowe 54
|
||||||
|
496573.0 False 3 2 Stare 78
|
||||||
|
1156054.0 False 4 0 Stare 52
|
||||||
|
380931.0 False 3 3 Starołęka 82
|
||||||
|
285200.0 True 2 0 Stare 46
|
||||||
|
434201.0 True 4 1 Nowe 54
|
||||||
|
269984.0 True 3 0 Stare 76
|
||||||
|
333024.0 True 2 1 Stare 45
|
||||||
|
637037.0 True 4 3 Stare 79
|
||||||
|
319060.0 True 3 3 Grunwald 56
|
||||||
|
267700.0 True 2 2 Grunwald 45
|
||||||
|
365690.0 True 4 1 Winogrady 63
|
||||||
|
285678.0 True 2 4 Winogrady 48
|
||||||
|
295363.0 True 3 1 Stare 48
|
||||||
|
223750.0 True 2 0 Stare 37
|
||||||
|
277823.0 True 2 1 Jeżyce 50
|
||||||
|
333695.0 True 3 2 Jeżyce 68
|
||||||
|
288000.0 True 2 4 Naramowice 22
|
||||||
|
518000.0 True 4 0 Wilda 41
|
||||||
|
235000.0 True 2 4 Dębiec 44
|
||||||
|
364762.0 True 4 1 Winogrady 62
|
||||||
|
320000.0 True 4 3 Stare 40
|
||||||
|
449000.0 True 5 3 Wilda 97
|
||||||
|
249000.0 True 2 10 Grunwald 42
|
||||||
|
279000.0 True 2 3 Piątkowo 30
|
||||||
|
289000.0 True 3 4 Winogrady 48
|
||||||
|
318645.0 True 2 2 Stare 30
|
||||||
|
289000.0 True 2 7 Jeżyce 80
|
||||||
|
285000.0 True 2 2 Łazarz 20
|
||||||
|
399000.0 True 3 4 Piątkowo 69
|
||||||
|
350000.0 True 3 1 Rataje 63
|
||||||
|
240000.0 True 2 2 Dębiec 48
|
||||||
|
356160.0 False 4 4 Winogrady 36
|
||||||
|
290970.0 False 2 0 Winogrady 52
|
||||||
|
289000.0 True 3 4 Stare 47
|
||||||
|
399000.0 True 3 4 Piątkowo 69
|
||||||
|
315000.0 True 3 0 Piatkowo 50
|
||||||
|
329000.0 True 2 1 Grunwald 66
|
||||||
|
253000.0 True 2 4 Grunwald 70
|
||||||
|
179000.0 True 2 0 Grunwald 34
|
||||||
|
250000.0 True 2 0 Naramowice 50
|
||||||
|
410000.0 True 2 4 Jeżyce 43
|
||||||
|
360000.0 True 3 3 Jeżyce 62
|
||||||
|
590000.0 True 3 3 Jeżyce 80
|
||||||
|
325000.0 True 3 2 Jeżyce 64
|
||||||
|
247705.0 False 2 1 Podolany 74
|
||||||
|
247705.0 False 2 1 Piątkowo 74
|
||||||
|
392861.0 False 3 3 Winogrady 42
|
||||||
|
156085.0 False 2 4 Głuszyna 45
|
||||||
|
249441.0 False 2 5 Jeżyce 51
|
||||||
|
398000.0 True 3 3 Łazarz 96
|
||||||
|
255000.0 True 2 2 Wilda 72
|
||||||
|
329000.0 True 2 1 Naramowice 40
|
||||||
|
232409.0 True 2 0 Stare 38
|
||||||
|
296300.0 True 3 2 Stare 49
|
||||||
|
364762.0 True 4 4 Winogrady 63
|
||||||
|
239592.0 True 2 5 Grunwald 36
|
||||||
|
395000.0 True 3 0 Naramowice 73
|
||||||
|
333694.0 False 3 1 Piątkowo 38
|
||||||
|
344500.0 False 3 6 Jeżyce 53
|
||||||
|
377652.0 False 4 6 Jeżyce 22
|
||||||
|
332145.0 False 3 0 Winogrady 45
|
||||||
|
328241.0 False 3 3 Winogrady 81
|
||||||
|
328241.0 False 3 5 Winogrady 81
|
||||||
|
355041.6 False 3 6 Jeżyce 96
|
||||||
|
318384.0 False 3 6 Jeżyce 24
|
||||||
|
328241.0 False 3 1 Winogrady 81
|
||||||
|
323340.0 False 3 0 Winogrady 89
|
||||||
|
332145.0 False 3 1 Winogrady 45
|
||||||
|
392607.0 False 4 5 Jeżyce 94
|
||||||
|
345180.0 False 3 1 Jeżyce 30
|
||||||
|
315810.0 False 4 8 Winogrady 20
|
||||||
|
263581.0 False 2 2 Winogrady 21
|
||||||
|
323340.0 False 3 2 Winogrady 89
|
||||||
|
263581.0 False 2 6 Winogrady 21
|
||||||
|
238948.0 False 2 5 Winogrady 54
|
||||||
|
240875.0 False 2 7 Winogrady 54
|
||||||
|
246379.0 False 2 0 Winogrady 39
|
||||||
|
345240.0 False 4 1 Winogrady 54
|
||||||
|
345240.0 False 4 0 Winogrady 54
|
||||||
|
332145.0 False 3 3 Winogrady 45
|
||||||
|
348117.0 False 4 5 Winogrady 54
|
||||||
|
348117.0 False 4 6 Winogrady 54
|
||||||
|
339282.0 False 3 7 Winogrady 62
|
||||||
|
317200.0 False 3 8 Winogrady 52
|
||||||
|
329422.5 False 3 6 Winogrady 45
|
||||||
|
265741.5 False 2 7 Winogrady 21
|
||||||
|
238948.0 False 2 6 Winogrady 54
|
||||||
|
348117.0 False 4 7 Winogrady 54
|
||||||
|
339282.0 False 3 5 Winogrady 62
|
||||||
|
263581.0 False 2 4 Winogrady 21
|
||||||
|
348117.0 False 4 4 Winogrady 54
|
||||||
|
296277.0 False 3 0 Winogrady 57
|
||||||
|
304133.5 False 3 1 Winogrady 27
|
||||||
|
296277.0 False 3 2 Winogrady 57
|
||||||
|
263581.0 False 2 3 Winogrady 21
|
||||||
|
345240.0 False 4 2 Winogrady 54
|
||||||
|
263581.0 False 2 1 Winogrady 21
|
||||||
|
345240.0 False 4 3 Winogrady 54
|
||||||
|
339282.0 False 3 6 Winogrady 62
|
||||||
|
323340.0 False 3 3 Winogrady 89
|
||||||
|
310020.0 False 3 0 Winogrady 67
|
||||||
|
252723.0 False 2 1 Winogrady 43
|
||||||
|
366850.0 False 4 1 Winogrady 25
|
||||||
|
319875.0 False 2 8 Grunwald 18
|
||||||
|
249641.0 False 2 0 Jeżyce 54
|
||||||
|
356160.0 False 4 4 Winogrady 36
|
||||||
|
156085.0 False 2 4 Nowe 54
|
||||||
|
319875.0 False 2 7 Grunwald 18
|
||||||
|
329763.26 False 2 9 Grunwald 94
|
||||||
|
324400.97 False 2 7 Grunwald 94
|
||||||
|
388352.0 False 3 7 Grunwald 60
|
||||||
|
347633.0 False 3 10 Grunwald 20
|
||||||
|
409713.0 False 3 11 Grunwald 62
|
||||||
|
330368.0 False 2 12 Grunwald 62
|
||||||
|
356251.9 False 3 14 Grunwald 20
|
||||||
|
347839.75 False 2 12 Grunwald 58
|
||||||
|
350506.16 False 3 11 Grunwald 20
|
||||||
|
342405.13 False 2 11 Grunwald 58
|
||||||
|
429699.0 False 3 15 Grunwald 62
|
||||||
|
319875.0 False 2 9 Grunwald 18
|
||||||
|
341703.96 False 3 8 Grunwald 21
|
||||||
|
336969.98 False 2 10 Grunwald 58
|
||||||
|
413044.0 False 3 12 Grunwald 62
|
||||||
|
405104.0 False 3 1 Grunwald 34
|
||||||
|
341703.96 False 3 9 Grunwald 21
|
||||||
|
424977.14 False 4 5 Grunwald 20
|
||||||
|
327787.0 False 2 11 Grunwald 62
|
||||||
|
353378.74 False 3 12 Grunwald 20
|
||||||
|
332949.0 False 2 13 Grunwald 62
|
||||||
|
383760.0 False 3 6 Grunwald 60
|
||||||
|
335530.0 False 2 14 Grunwald 62
|
||||||
|
387040.0 False 3 5 Grunwald 60
|
||||||
|
302985.6 False 2 4 Grunwald 18
|
||||||
|
410780.0 False 3 3 Grunwald 44
|
||||||
|
417773.83 False 4 3 Grunwald 20
|
||||||
|
303286.5 False 2 3 Grunwald 13
|
||||||
|
364080.0 False 3 1 Grunwald 60
|
||||||
|
319055.27 False 3 3 Grunwald 21
|
||||||
|
292100.0 False 2 1 Grunwald 80
|
||||||
|
245830.0 False 2 2 Grunwald 67
|
||||||
|
352390.0 False 2 12 Grunwald 80
|
||||||
|
377200.0 False 3 3 Grunwald 60
|
||||||
|
313080.0 False 3 5 Winogrady 18
|
||||||
|
314089.0 False 2 5 Grunwald 49
|
||||||
|
308237.0 False 2 1 Nowe 85
|
||||||
|
339072.0 False 2 9 Grunwald 98
|
||||||
|
321812.5 False 2 8 Grunwald 49
|
||||||
|
322643.5 False 2 10 Grunwald 81
|
||||||
|
500203.02 False 4 10 Grunwald 73
|
||||||
|
343978.41 False 3 9 Grunwald 14
|
||||||
|
325184.0 False 2 11 Grunwald 81
|
||||||
|
351130.0 False 3 10 Grunwald 85
|
||||||
|
297420.8 False 2 3 Grunwald 24
|
||||||
|
267702.4 False 2 2 Grunwald 22
|
||||||
|
506566.5 False 4 11 Grunwald 73
|
||||||
|
297420.8 False 2 2 Grunwald 24
|
||||||
|
495722.51 False 4 9 Grunwald 99
|
||||||
|
426416.8 False 4 6 Grunwald 20
|
||||||
|
327081.85 False 2 8 Grunwald 94
|
||||||
|
307080.0 False 2 5 Grunwald 18
|
||||||
|
305793.0 False 2 4 Grunwald 13
|
||||||
|
312198.0 False 2 6 Grunwald 18
|
||||||
|
333231.99 False 3 7 Grunwald 21
|
||||||
|
514939.5 False 4 13 Grunwald 73
|
||||||
|
317880.0 False 2 2 Grunwald 98
|
||||||
|
267702.4 False 2 3 Grunwald 22
|
||||||
|
519126.0 False 4 14 Grunwald 73
|
||||||
|
510753.0 False 4 12 Grunwald 73
|
||||||
|
347010.0 False 2 10 Grunwald 80
|
||||||
|
324387.0 False 2 9 Grunwald 49
|
||||||
|
311514.5 False 2 4 Grunwald 49
|
||||||
|
298249.6 False 2 6 Grunwald 38
|
||||||
|
333774.0 False 2 6 Grunwald 98
|
||||||
|
495722.51 False 4 8 Grunwald 99
|
||||||
|
331125.0 False 2 5 Grunwald 98
|
||||||
|
336423.0 False 2 8 Grunwald 98
|
||||||
|
325312.98 False 3 3 Grunwald 14
|
||||||
|
298249.6 False 2 5 Grunwald 38
|
||||||
|
495782.26 False 4 7 Grunwald 99
|
||||||
|
341311.84 False 3 8 Grunwald 14
|
||||||
|
328476.0 False 2 4 Grunwald 98
|
||||||
|
316848.0 False 2 6 Grunwald 52
|
||||||
|
328241.0 False 3 2 Winogrady 81
|
||||||
|
332145.0 False 3 2 Winogrady 45
|
||||||
|
348750.0 True 2 4 Centrum 50
|
||||||
|
297600.0 True 2 3 Winogrady 50
|
||||||
|
300160.0 True 2 3 Winogrady 90
|
||||||
|
293760.0 True 2 3 Winogrady 90
|
||||||
|
315819.0 False 2 5 Grunwald 13
|
||||||
|
435784.0 False 3 5 Grunwald 44
|
||||||
|
407208.0 False 3 2 Grunwald 44
|
||||||
|
370640.0 False 3 2 Grunwald 60
|
||||||
|
329422.5 False 3 4 Winogrady 45
|
||||||
|
329422.5 False 3 7 Winogrady 45
|
||||||
|
328241.0 False 3 4 Winogrady 81
|
||||||
|
323340.0 False 3 1 Winogrady 89
|
||||||
|
329422.5 False 3 5 Winogrady 45
|
||||||
|
335000.0 True 3 1 Piątkowo 63
|
||||||
|
391728.59 True 3 2 Winogrady 21
|
||||||
|
285678.0 True 2 2 Winogrady 42
|
||||||
|
287566.0 True 2 1 Winogrady 74
|
||||||
|
421049.88 True 4 1 Grunwald 42
|
||||||
|
332388.13 True 2 4 Grunwald 96
|
||||||
|
330359.78 True 2 14 Grunwald 56
|
||||||
|
301206.53 True 2 7 Grunwald 81
|
||||||
|
307490.0 True 2 14 Grunwald 94
|
||||||
|
307880.88 True 3 3 Grunwald 16
|
||||||
|
319047.97 True 3 3 Grunwald 21
|
||||||
|
495782.25 True 4 7 Grunwald 99
|
||||||
|
413044.03 True 3 12 Grunwald 62
|
||||||
|
380480.0 True 3 4 Grunwald 60
|
||||||
|
426416.78 True 4 6 Grunwald 20
|
||||||
|
324387.0 True 2 9 Grunwald 49
|
||||||
|
333212.88 True 2 7 Grunwald 21
|
||||||
|
579000.0 True 4 3 Naramowice 97
|
||||||
|
215000.0 True 2 2 Grunwald 44
|
||||||
|
267702.41 True 2 3 Grunwald 22
|
||||||
|
245830.0 True 2 2 Grunwald 67
|
||||||
|
410000.0 True 2 5 Rataje 53
|
||||||
|
365000.0 True 4 2 Łazarz 62
|
||||||
|
257000.0 True 2 12 Winogrady 47
|
||||||
|
240000.0 True 2 16 Rataje 36
|
||||||
|
319055.0 True 3 3 Grunwald 56
|
||||||
|
267702.0 True 2 2 Grunwald 45
|
||||||
|
245830.0 True 2 2 Grunwald 40
|
||||||
|
253193.0 True 2 6 Jeżyce 38
|
||||||
|
318384.0 True 3 6 Jeżyce 48
|
||||||
|
245875.0 True 2 1 Jeżyce 38
|
||||||
|
347090.0 True 3 1 Winogrady 57
|
||||||
|
238948.0 True 2 4 Stare 39
|
||||||
|
355000.0 True 3 3 Łazarz 62
|
||||||
|
330255.0 False 2 1 Stare 14
|
||||||
|
442080.0 False 3 1 Starołęka 68
|
||||||
|
277823.0 False 2 2 Podolany 70
|
||||||
|
308039.0 False 2 0 Naramowice 71
|
||||||
|
321656.0 False 2 1 Naramowice 50
|
||||||
|
304140.0 False 3 5 Winogrady 18
|
||||||
|
771672.0 False 4 4 Górczyn 66
|
||||||
|
322497.0 False 2 6 Naramowice 60
|
||||||
|
333024.0 False 2 1 Stare 51
|
||||||
|
290000.0 True 3 14 Nowe 20
|
||||||
|
515000.0 True 3 0 Rataje 71
|
||||||
|
372000.0 True 4 1 Nadolnik 125
|
||||||
|
410000.0 True 2 5 Rataje 53
|
||||||
|
259000.0 True 2 0 Grunwald 52
|
||||||
|
298950.0 True 2 0 Piątkowo 70
|
||||||
|
495000.0 True 4 3 Naramowice 104
|
||||||
|
245000.0 True 2 7 Jeżyce 53
|
||||||
|
319000.0 True 2 1 Centrum 52
|
||||||
|
420000.0 True 2 1 Naramowice 50
|
||||||
|
420000.0 True 2 3 Naramowice 50
|
||||||
|
300000.0 True 3 2 Grunwald 49
|
||||||
|
300000.0 True 3 2 Winogrady 48
|
||||||
|
339000.0 True 2 2 Stare 53
|
||||||
|
298000.0 True 3 1 Nowe 30
|
||||||
|
250000.0 True 3 0 Stare 45
|
||||||
|
475000.0 True 4 4 Naramowice 50
|
||||||
|
329000.0 True 3 1 Jeżyce 112
|
||||||
|
299000.0 True 2 0 Piątkowo 20
|
||||||
|
259000.0 True 3 1 Grunwald 48
|
||||||
|
370000.0 True 4 4 Piątkowo 60
|
||||||
|
249641.0 False 2 0 Ogrody 54
|
||||||
|
375000.0 True 3 1 Nowe 63
|
||||||
|
390000.0 True 4 4 Piątkowo 74
|
||||||
|
288000.0 True 3 4 Stare 30
|
||||||
|
468000.0 True 2 3 Grunwald 60
|
||||||
|
279000.0 True 3 1 Wilda 68
|
||||||
|
250000.0 True 2 6 Winogrady 42
|
||||||
|
350000.0 True 2 2 Jeżyce 46
|
||||||
|
310000.0 True 2 1 Nowe 40
|
||||||
|
289000.0 True 3 4 Winogrady 47
|
||||||
|
405900.0 True 3 2 Stare 82
|
||||||
|
359000.0 True 3 1 Wilda 20
|
||||||
|
326000.0 True 2 1 Sołacz 39
|
||||||
|
350000.0 True 2 2 Jeżyce 47
|
||||||
|
239000.0 True 2 4 Grunwald 50
|
||||||
|
224343.0 False 2 4 Starołęka 35
|
||||||
|
362220.0 False 3 3 Starołęka 60
|
||||||
|
287394.0 False 2 2 Starołęka 50
|
||||||
|
320739.0 False 3 1 Starołęka 56
|
||||||
|
460499.0 False 3 1 Stare 51
|
||||||
|
242731.0 False 2 0 Podolany 74
|
||||||
|
156085.0 False 2 4 Nowe 54
|
||||||
|
285200.0 False 2 1 Winogrady 46
|
||||||
|
211190.0 False 2 0 Podolany 78
|
||||||
|
309000.0 True 3 3 Wilda 80
|
||||||
|
313000.0 True 2 1 Górczyn 48
|
||||||
|
313000.0 True 2 1 Dębiec 48
|
||||||
|
643720.0 True 4 0 Stare 60
|
||||||
|
415000.0 True 2 5 Nowe 53
|
||||||
|
325000.0 True 2 3 Stare 60
|
||||||
|
599000.0 True 4 3 Stare 97
|
||||||
|
319000.0 True 2 0 Grunwald 20
|
||||||
|
299000.0 True 3 6 Stare 63
|
||||||
|
299000.0 True 2 0 Grunwald 51
|
||||||
|
339000.0 True 2 2 Centrum 53
|
||||||
|
320000.0 True 3 4 Stare 65
|
||||||
|
364000.0 True 3 1 Nowe 67
|
||||||
|
209000.0 True 3 3 Grunwald 50
|
|
1340
wyk/data02_train.tsv
Normal file
1675
wyk/data_flats.tsv
Normal file
4186
wyk/data_flats_with_outliers.tsv
Normal file
BIN
wyk/denoising.png
Normal file
After Width: | Height: | Size: 34 KiB |
BIN
wyk/denoising_autoencoder.png
Normal file
After Width: | Height: | Size: 72 KiB |
118
wyk/ex2data2.txt
Normal file
@ -0,0 +1,118 @@
|
|||||||
|
0.051267,0.69956,1
|
||||||
|
-0.092742,0.68494,1
|
||||||
|
-0.21371,0.69225,1
|
||||||
|
-0.375,0.50219,1
|
||||||
|
-0.51325,0.46564,1
|
||||||
|
-0.52477,0.2098,1
|
||||||
|
-0.39804,0.034357,1
|
||||||
|
-0.30588,-0.19225,1
|
||||||
|
0.016705,-0.40424,1
|
||||||
|
0.13191,-0.51389,1
|
||||||
|
0.38537,-0.56506,1
|
||||||
|
0.52938,-0.5212,1
|
||||||
|
0.63882,-0.24342,1
|
||||||
|
0.73675,-0.18494,1
|
||||||
|
0.54666,0.48757,1
|
||||||
|
0.322,0.5826,1
|
||||||
|
0.16647,0.53874,1
|
||||||
|
-0.046659,0.81652,1
|
||||||
|
-0.17339,0.69956,1
|
||||||
|
-0.47869,0.63377,1
|
||||||
|
-0.60541,0.59722,1
|
||||||
|
-0.62846,0.33406,1
|
||||||
|
-0.59389,0.005117,1
|
||||||
|
-0.42108,-0.27266,1
|
||||||
|
-0.11578,-0.39693,1
|
||||||
|
0.20104,-0.60161,1
|
||||||
|
0.46601,-0.53582,1
|
||||||
|
0.67339,-0.53582,1
|
||||||
|
-0.13882,0.54605,1
|
||||||
|
-0.29435,0.77997,1
|
||||||
|
-0.26555,0.96272,1
|
||||||
|
-0.16187,0.8019,1
|
||||||
|
-0.17339,0.64839,1
|
||||||
|
-0.28283,0.47295,1
|
||||||
|
-0.36348,0.31213,1
|
||||||
|
-0.30012,0.027047,1
|
||||||
|
-0.23675,-0.21418,1
|
||||||
|
-0.06394,-0.18494,1
|
||||||
|
0.062788,-0.16301,1
|
||||||
|
0.22984,-0.41155,1
|
||||||
|
0.2932,-0.2288,1
|
||||||
|
0.48329,-0.18494,1
|
||||||
|
0.64459,-0.14108,1
|
||||||
|
0.46025,0.012427,1
|
||||||
|
0.6273,0.15863,1
|
||||||
|
0.57546,0.26827,1
|
||||||
|
0.72523,0.44371,1
|
||||||
|
0.22408,0.52412,1
|
||||||
|
0.44297,0.67032,1
|
||||||
|
0.322,0.69225,1
|
||||||
|
0.13767,0.57529,1
|
||||||
|
-0.0063364,0.39985,1
|
||||||
|
-0.092742,0.55336,1
|
||||||
|
-0.20795,0.35599,1
|
||||||
|
-0.20795,0.17325,1
|
||||||
|
-0.43836,0.21711,1
|
||||||
|
-0.21947,-0.016813,1
|
||||||
|
-0.13882,-0.27266,1
|
||||||
|
0.18376,0.93348,0
|
||||||
|
0.22408,0.77997,0
|
||||||
|
0.29896,0.61915,0
|
||||||
|
0.50634,0.75804,0
|
||||||
|
0.61578,0.7288,0
|
||||||
|
0.60426,0.59722,0
|
||||||
|
0.76555,0.50219,0
|
||||||
|
0.92684,0.3633,0
|
||||||
|
0.82316,0.27558,0
|
||||||
|
0.96141,0.085526,0
|
||||||
|
0.93836,0.012427,0
|
||||||
|
0.86348,-0.082602,0
|
||||||
|
0.89804,-0.20687,0
|
||||||
|
0.85196,-0.36769,0
|
||||||
|
0.82892,-0.5212,0
|
||||||
|
0.79435,-0.55775,0
|
||||||
|
0.59274,-0.7405,0
|
||||||
|
0.51786,-0.5943,0
|
||||||
|
0.46601,-0.41886,0
|
||||||
|
0.35081,-0.57968,0
|
||||||
|
0.28744,-0.76974,0
|
||||||
|
0.085829,-0.75512,0
|
||||||
|
0.14919,-0.57968,0
|
||||||
|
-0.13306,-0.4481,0
|
||||||
|
-0.40956,-0.41155,0
|
||||||
|
-0.39228,-0.25804,0
|
||||||
|
-0.74366,-0.25804,0
|
||||||
|
-0.69758,0.041667,0
|
||||||
|
-0.75518,0.2902,0
|
||||||
|
-0.69758,0.68494,0
|
||||||
|
-0.4038,0.70687,0
|
||||||
|
-0.38076,0.91886,0
|
||||||
|
-0.50749,0.90424,0
|
||||||
|
-0.54781,0.70687,0
|
||||||
|
0.10311,0.77997,0
|
||||||
|
0.057028,0.91886,0
|
||||||
|
-0.10426,0.99196,0
|
||||||
|
-0.081221,1.1089,0
|
||||||
|
0.28744,1.087,0
|
||||||
|
0.39689,0.82383,0
|
||||||
|
0.63882,0.88962,0
|
||||||
|
0.82316,0.66301,0
|
||||||
|
0.67339,0.64108,0
|
||||||
|
1.0709,0.10015,0
|
||||||
|
-0.046659,-0.57968,0
|
||||||
|
-0.23675,-0.63816,0
|
||||||
|
-0.15035,-0.36769,0
|
||||||
|
-0.49021,-0.3019,0
|
||||||
|
-0.46717,-0.13377,0
|
||||||
|
-0.28859,-0.060673,0
|
||||||
|
-0.61118,-0.067982,0
|
||||||
|
-0.66302,-0.21418,0
|
||||||
|
-0.59965,-0.41886,0
|
||||||
|
-0.72638,-0.082602,0
|
||||||
|
-0.83007,0.31213,0
|
||||||
|
-0.72062,0.53874,0
|
||||||
|
-0.59389,0.49488,0
|
||||||
|
-0.48445,0.99927,0
|
||||||
|
-0.0063364,0.99927,0
|
||||||
|
0.63265,-0.030612,0
|
BIN
wyk/exp1.png
Normal file
After Width: | Height: | Size: 27 KiB |
BIN
wyk/exp2.png
Normal file
After Width: | Height: | Size: 74 KiB |
BIN
wyk/exp3.png
Normal file
After Width: | Height: | Size: 50 KiB |
BIN
wyk/fit.png
Normal file
After Width: | Height: | Size: 138 KiB |
BIN
wyk/gru.png
Normal file
After Width: | Height: | Size: 26 KiB |
151
wyk/iris.csv
Normal file
@ -0,0 +1,151 @@
|
|||||||
|
sl,sw,pl,pw,Gatunek
|
||||||
|
5.2,3.4,1.4,0.2,Iris-setosa
|
||||||
|
5.1,3.7,1.5,0.4,Iris-setosa
|
||||||
|
6.7,3.1,5.6,2.4,Iris-virginica
|
||||||
|
6.5,3.2,5.1,2.0,Iris-virginica
|
||||||
|
4.9,2.5,4.5,1.7,Iris-virginica
|
||||||
|
6.0,2.7,5.1,1.6,Iris-versicolor
|
||||||
|
5.7,2.6,3.5,1.0,Iris-versicolor
|
||||||
|
5.0,2.0,3.5,1.0,Iris-versicolor
|
||||||
|
5.2,3.5,1.5,0.2,Iris-setosa
|
||||||
|
4.8,3.0,1.4,0.1,Iris-setosa
|
||||||
|
6.7,3.3,5.7,2.5,Iris-virginica
|
||||||
|
6.1,3.0,4.9,1.8,Iris-virginica
|
||||||
|
4.8,3.4,1.9,0.2,Iris-setosa
|
||||||
|
5.8,2.8,5.1,2.4,Iris-virginica
|
||||||
|
4.4,2.9,1.4,0.2,Iris-setosa
|
||||||
|
7.2,3.0,5.8,1.6,Iris-virginica
|
||||||
|
4.4,3.2,1.3,0.2,Iris-setosa
|
||||||
|
5.0,3.5,1.3,0.3,Iris-setosa
|
||||||
|
5.4,3.9,1.3,0.4,Iris-setosa
|
||||||
|
7.7,2.8,6.7,2.0,Iris-virginica
|
||||||
|
5.0,3.6,1.4,0.2,Iris-setosa
|
||||||
|
6.2,2.8,4.8,1.8,Iris-virginica
|
||||||
|
6.0,2.2,5.0,1.5,Iris-virginica
|
||||||
|
7.4,2.8,6.1,1.9,Iris-virginica
|
||||||
|
5.0,3.2,1.2,0.2,Iris-setosa
|
||||||
|
6.7,3.1,4.4,1.4,Iris-versicolor
|
||||||
|
6.7,3.1,4.7,1.5,Iris-versicolor
|
||||||
|
5.6,2.7,4.2,1.3,Iris-versicolor
|
||||||
|
5.6,2.5,3.9,1.1,Iris-versicolor
|
||||||
|
6.3,3.3,4.7,1.6,Iris-versicolor
|
||||||
|
5.1,3.4,1.5,0.2,Iris-setosa
|
||||||
|
6.0,2.9,4.5,1.5,Iris-versicolor
|
||||||
|
5.3,3.7,1.5,0.2,Iris-setosa
|
||||||
|
5.6,2.9,3.6,1.3,Iris-versicolor
|
||||||
|
5.5,2.5,4.0,1.3,Iris-versicolor
|
||||||
|
5.5,2.4,3.7,1.0,Iris-versicolor
|
||||||
|
4.4,3.0,1.3,0.2,Iris-setosa
|
||||||
|
6.6,3.0,4.4,1.4,Iris-versicolor
|
||||||
|
7.9,3.8,6.4,2.0,Iris-virginica
|
||||||
|
5.7,2.8,4.1,1.3,Iris-versicolor
|
||||||
|
5.8,2.7,4.1,1.0,Iris-versicolor
|
||||||
|
6.5,2.8,4.6,1.5,Iris-versicolor
|
||||||
|
6.1,2.8,4.7,1.2,Iris-versicolor
|
||||||
|
5.1,3.8,1.9,0.4,Iris-setosa
|
||||||
|
5.0,3.4,1.6,0.4,Iris-setosa
|
||||||
|
5.5,2.6,4.4,1.2,Iris-versicolor
|
||||||
|
5.0,3.4,1.5,0.2,Iris-setosa
|
||||||
|
6.8,2.8,4.8,1.4,Iris-versicolor
|
||||||
|
6.9,3.1,4.9,1.5,Iris-versicolor
|
||||||
|
6.1,2.9,4.7,1.4,Iris-versicolor
|
||||||
|
5.1,3.8,1.6,0.2,Iris-setosa
|
||||||
|
6.4,3.2,5.3,2.3,Iris-virginica
|
||||||
|
6.4,2.7,5.3,1.9,Iris-virginica
|
||||||
|
5.7,2.8,4.5,1.3,Iris-versicolor
|
||||||
|
5.8,2.6,4.0,1.2,Iris-versicolor
|
||||||
|
4.7,3.2,1.6,0.2,Iris-setosa
|
||||||
|
5.1,3.3,1.7,0.5,Iris-setosa
|
||||||
|
4.9,3.1,1.5,0.1,Iris-setosa
|
||||||
|
6.3,3.4,5.6,2.4,Iris-virginica
|
||||||
|
5.1,3.8,1.5,0.3,Iris-setosa
|
||||||
|
7.0,3.2,4.7,1.4,Iris-versicolor
|
||||||
|
5.4,3.0,4.5,1.5,Iris-versicolor
|
||||||
|
6.0,2.2,4.0,1.0,Iris-versicolor
|
||||||
|
6.0,3.0,4.8,1.8,Iris-virginica
|
||||||
|
6.2,2.9,4.3,1.3,Iris-versicolor
|
||||||
|
5.6,3.0,4.1,1.3,Iris-versicolor
|
||||||
|
4.9,3.0,1.4,0.2,Iris-setosa
|
||||||
|
5.0,2.3,3.3,1.0,Iris-versicolor
|
||||||
|
6.3,2.5,5.0,1.9,Iris-virginica
|
||||||
|
4.8,3.4,1.6,0.2,Iris-setosa
|
||||||
|
5.9,3.0,4.2,1.5,Iris-versicolor
|
||||||
|
4.6,3.6,1.0,0.2,Iris-setosa
|
||||||
|
5.0,3.5,1.6,0.6,Iris-setosa
|
||||||
|
5.7,4.4,1.5,0.4,Iris-setosa
|
||||||
|
5.0,3.0,1.6,0.2,Iris-setosa
|
||||||
|
5.6,3.0,4.5,1.5,Iris-versicolor
|
||||||
|
6.3,2.8,5.1,1.5,Iris-virginica
|
||||||
|
5.2,2.7,3.9,1.4,Iris-versicolor
|
||||||
|
5.9,3.2,4.8,1.8,Iris-versicolor
|
||||||
|
7.7,3.0,6.1,2.3,Iris-virginica
|
||||||
|
6.2,3.4,5.4,2.3,Iris-virginica
|
||||||
|
6.4,2.9,4.3,1.3,Iris-versicolor
|
||||||
|
6.5,3.0,5.5,1.8,Iris-virginica
|
||||||
|
5.8,2.7,5.1,1.9,Iris-virginica
|
||||||
|
6.9,3.2,5.7,2.3,Iris-virginica
|
||||||
|
6.4,2.8,5.6,2.2,Iris-virginica
|
||||||
|
4.7,3.2,1.3,0.2,Iris-setosa
|
||||||
|
5.5,2.4,3.8,1.1,Iris-versicolor
|
||||||
|
5.4,3.4,1.5,0.4,Iris-setosa
|
||||||
|
7.2,3.6,6.1,2.5,Iris-virginica
|
||||||
|
6.7,2.5,5.8,1.8,Iris-virginica
|
||||||
|
6.1,3.0,4.6,1.4,Iris-versicolor
|
||||||
|
6.0,3.4,4.5,1.6,Iris-versicolor
|
||||||
|
6.3,2.7,4.9,1.8,Iris-virginica
|
||||||
|
6.9,3.1,5.1,2.3,Iris-virginica
|
||||||
|
5.5,3.5,1.3,0.2,Iris-setosa
|
||||||
|
6.7,3.0,5.2,2.3,Iris-virginica
|
||||||
|
4.6,3.1,1.5,0.2,Iris-setosa
|
||||||
|
5.8,2.7,5.1,1.9,Iris-virginica
|
||||||
|
6.4,3.1,5.5,1.8,Iris-virginica
|
||||||
|
7.3,2.9,6.3,1.8,Iris-virginica
|
||||||
|
4.8,3.0,1.4,0.3,Iris-setosa
|
||||||
|
7.1,3.0,5.9,2.1,Iris-virginica
|
||||||
|
5.9,3.0,5.1,1.8,Iris-virginica
|
||||||
|
6.1,2.6,5.6,1.4,Iris-virginica
|
||||||
|
5.4,3.9,1.7,0.4,Iris-setosa
|
||||||
|
6.4,3.2,4.5,1.5,Iris-versicolor
|
||||||
|
5.1,2.5,3.0,1.1,Iris-versicolor
|
||||||
|
6.3,2.9,5.6,1.8,Iris-virginica
|
||||||
|
7.2,3.2,6.0,1.8,Iris-virginica
|
||||||
|
5.4,3.4,1.7,0.2,Iris-setosa
|
||||||
|
4.6,3.2,1.4,0.2,Iris-setosa
|
||||||
|
6.1,2.8,4.0,1.3,Iris-versicolor
|
||||||
|
7.7,3.8,6.7,2.2,Iris-virginica
|
||||||
|
5.7,2.9,4.2,1.3,Iris-versicolor
|
||||||
|
5.1,3.5,1.4,0.2,Iris-setosa
|
||||||
|
4.9,3.1,1.5,0.1,Iris-setosa
|
||||||
|
6.5,3.0,5.2,2.0,Iris-virginica
|
||||||
|
4.9,3.1,1.5,0.1,Iris-setosa
|
||||||
|
6.3,2.3,4.4,1.3,Iris-versicolor
|
||||||
|
6.2,2.2,4.5,1.5,Iris-versicolor
|
||||||
|
5.7,3.8,1.7,0.3,Iris-setosa
|
||||||
|
6.4,2.8,5.6,2.1,Iris-virginica
|
||||||
|
4.9,2.4,3.3,1.0,Iris-versicolor
|
||||||
|
5.7,2.5,5.0,2.0,Iris-virginica
|
||||||
|
5.5,4.2,1.4,0.2,Iris-setosa
|
||||||
|
6.7,3.0,5.0,1.7,Iris-versicolor
|
||||||
|
5.0,3.3,1.4,0.2,Iris-setosa
|
||||||
|
6.3,2.5,4.9,1.5,Iris-versicolor
|
||||||
|
5.4,3.7,1.5,0.2,Iris-setosa
|
||||||
|
7.7,2.6,6.9,2.3,Iris-virginica
|
||||||
|
5.7,3.0,4.2,1.2,Iris-versicolor
|
||||||
|
7.6,3.0,6.6,2.1,Iris-virginica
|
||||||
|
4.8,3.1,1.6,0.2,Iris-setosa
|
||||||
|
5.6,2.8,4.9,2.0,Iris-virginica
|
||||||
|
4.5,2.3,1.3,0.3,Iris-setosa
|
||||||
|
6.8,3.2,5.9,2.3,Iris-virginica
|
||||||
|
6.3,3.3,6.0,2.5,Iris-virginica
|
||||||
|
4.6,3.4,1.4,0.3,Iris-setosa
|
||||||
|
5.8,2.7,3.9,1.2,Iris-versicolor
|
||||||
|
5.5,2.3,4.0,1.3,Iris-versicolor
|
||||||
|
5.2,4.1,1.5,0.1,Iris-setosa
|
||||||
|
6.6,2.9,4.6,1.3,Iris-versicolor
|
||||||
|
4.3,3.0,1.1,0.1,Iris-setosa
|
||||||
|
6.8,3.0,5.5,2.1,Iris-virginica
|
||||||
|
5.8,4.0,1.2,0.2,Iris-setosa
|
||||||
|
5.1,3.5,1.4,0.3,Iris-setosa
|
||||||
|
6.5,3.0,5.8,2.2,Iris-virginica
|
||||||
|
6.9,3.1,5.4,2.1,Iris-virginica
|
||||||
|
6.7,3.3,5.7,2.1,Iris-virginica
|
|
BIN
wyk/learning-curves.png
Normal file
After Width: | Height: | Size: 5.9 KiB |
BIN
wyk/lstm.jpg
Normal file
After Width: | Height: | Size: 37 KiB |
4939
wyk/mieszkania4.tsv
Normal file
BIN
wyk/multireglog.png
Normal file
After Width: | Height: | Size: 56 KiB |
BIN
wyk/nn1.png
Normal file
After Width: | Height: | Size: 83 KiB |
BIN
wyk/nn2.png
Normal file
After Width: | Height: | Size: 85 KiB |
BIN
wyk/nn3.png
Normal file
After Width: | Height: | Size: 85 KiB |
BIN
wyk/perceptron.png
Normal file
After Width: | Height: | Size: 119 KiB |
100
wyk/polynomial_logistic.tsv
Normal file
@ -0,0 +1,100 @@
|
|||||||
|
1 0.25777005758108174 0.601012316037165
|
||||||
|
1 0.3659669567447452 -0.11214686303429633
|
||||||
|
0 0.49453050141627375 0.47110655546911206
|
||||||
|
0 0.7029060372914113 -0.9225798301680093
|
||||||
|
0 0.46658862037642423 -0.6226973935055724
|
||||||
|
0 0.8793946243263941 -0.11408014657778076
|
||||||
|
0 -0.3311850002119068 0.8444766749977881
|
||||||
|
0 -0.5435170087333634 0.8851383010436487
|
||||||
|
0 0.9197924083397226 0.41607011737177735
|
||||||
|
0 0.28011742147804797 0.6143115673056148
|
||||||
|
0 0.9475436344725683 -0.7830731144606005
|
||||||
|
0 0.4904989452188586 0.649356142549592
|
||||||
|
0 -0.865983500565505 0.9896361556274065
|
||||||
|
0 -0.8579184997717257 0.3062253122060574
|
||||||
|
0 0.08082005095746103 -0.7736760810964189
|
||||||
|
0 -0.3363842450225085 -0.8802992880290186
|
||||||
|
0 0.4748472924067402 0.9756949850919965
|
||||||
|
0 -0.7956979203895616 0.8751067723304518
|
||||||
|
1 0.06752895667287606 -0.7683056187589332
|
||||||
|
0 -0.5825898275446799 0.8068359661366173
|
||||||
|
1 0.1109238791315652 -0.2034825016864903
|
||||||
|
0 0.5011542085506828 0.9366868642789181
|
||||||
|
0 0.2011359606302785 0.4800561245801245
|
||||||
|
1 -0.38620580274071115 0.4003933803256208
|
||||||
|
1 -0.1722113915778094 0.3926707935387965
|
||||||
|
0 0.6575404624823169 -0.7070032890943085
|
||||||
|
1 -0.2832309098070882 0.034184675674787446
|
||||||
|
1 -0.16828017341376333 -0.1628482245819587
|
||||||
|
0 -0.6552618226108893 -0.3159705063754401
|
||||||
|
0 -0.6466772083696701 -0.07116372625398881
|
||||||
|
0 0.848711325640519 0.2132898335742659
|
||||||
|
1 -0.35490315474701606 -0.0025105634256454845
|
||||||
|
0 -0.36568446532837817 0.5637325774329354
|
||||||
|
0 -0.5089179414092766 0.8086671779253405
|
||||||
|
0 0.9609295951994559 -0.12114542304082354
|
||||||
|
0 0.055563338045806265 0.8532855304613407
|
||||||
|
0 -0.8937129542754998 -0.02555660184206876
|
||||||
|
0 0.40678784672410284 -0.5480665560665205
|
||||||
|
0 -0.7683896050204841 0.9475293644451854
|
||||||
|
0 -0.515467982993429 -0.5389177617277066
|
||||||
|
0 0.9693903475176826 -0.9765032993967369
|
||||||
|
0 -0.5476549714934908 -0.018838768427513974
|
||||||
|
0 0.5262277827151787 -0.9936327305281174
|
||||||
|
1 0.9394838829593151 0.9962891110157359
|
||||||
|
0 -0.935709119652979 -0.6940925482964921
|
||||||
|
0 0.6161569745665239 -0.044448545050667976
|
||||||
|
0 -0.08521587367561922 0.9636255303204684
|
||||||
|
0 0.9073344675416231 -0.08813265618067079
|
||||||
|
1 -0.1563237189794715 0.05022859605451302
|
||||||
|
0 -0.9785642881644829 -0.5076719844587916
|
||||||
|
0 -0.5494648865481802 -0.6044852696776528
|
||||||
|
0 -0.7170122682018529 -0.6250685449461151
|
||||||
|
1 0.5333872877810009 0.1395189003073396
|
||||||
|
0 -0.49270328980187905 0.9081426529064955
|
||||||
|
1 0.07777642690144848 -0.44188199856981347
|
||||||
|
0 0.8328452661100116 0.5508441451500428
|
||||||
|
1 -0.33275827507477573 -0.15434344174028314
|
||||||
|
0 -0.9057550401714867 0.6324599729071743
|
||||||
|
0 -0.8476574433184823 0.5739140088331203
|
||||||
|
0 -0.37393930555231103 0.7361874446899226
|
||||||
|
1 0.6610910543790163 0.0036185958785315275
|
||||||
|
0 0.49147748571126004 -0.6155167984371757
|
||||||
|
0 0.31992462553488177 -0.38253832622755657
|
||||||
|
0 0.7398386519468336 -0.915886088774648
|
||||||
|
0 0.5915392280694003 0.011422405850611383
|
||||||
|
0 -0.5818860867200502 -0.44086037005029377
|
||||||
|
0 -0.9066322824076023 0.21754010215910524
|
||||||
|
1 0.12243932470792318 -0.3830697406526009
|
||||||
|
0 0.40607941790742297 0.5626829623336307
|
||||||
|
1 -0.1210920179663808 -0.20552144405177608
|
||||||
|
0 0.48099006522554233 0.9583656149315158
|
||||||
|
0 -0.059491720260914205 0.6161097510891897
|
||||||
|
1 -0.053220979060695006 0.07562497263502688
|
||||||
|
0 -0.8742304482942296 -0.13488952315510616
|
||||||
|
0 0.7362712712103594 0.6087347685508093
|
||||||
|
0 0.025549937023763736 -0.6202087182389777
|
||||||
|
0 0.6755333538371804 0.7047713746899604
|
||||||
|
0 -0.3954771867034055 0.3567082570178153
|
||||||
|
1 0.24896928809009156 -0.17106278785061302
|
||||||
|
0 0.6133735778535989 -0.6297261231852487
|
||||||
|
1 -0.35955189872833593 -0.2086164112593747
|
||||||
|
0 0.646544898896497 0.8858921579510579
|
||||||
|
0 0.6459228334265068 -0.9141274779126995
|
||||||
|
0 -0.5279127041052518 -0.11119649758918437
|
||||||
|
0 -0.47141090620857784 -0.29849889702571786
|
||||||
|
1 0.1901970467567704 -0.5049996808415897
|
||||||
|
0 -0.5497623652380574 -0.49032403671408553
|
||||||
|
0 -0.5759454285366339 0.445122514716527
|
||||||
|
0 -0.7800687910859982 -0.4823078816937112
|
||||||
|
0 0.39722150362989095 0.5827352140491311
|
||||||
|
1 0.018540458464545218 -0.20805328372207677
|
||||||
|
0 -0.14419638252986933 -0.8679481460173017
|
||||||
|
1 -0.15012196110925857 0.5474017473230433
|
||||||
|
1 -0.11028545705088533 0.5371497474265077
|
||||||
|
0 -0.46577855502057375 -0.9226883886539352
|
||||||
|
0 0.4843595022265692 0.47692504895620713
|
||||||
|
0 0.4330264545403766 -0.40096944878062857
|
||||||
|
0 -0.7401024435876022 0.758623363044544
|
||||||
|
0 0.20470935356917574 -0.7551473328272353
|
||||||
|
0 0.1877078820888327 -0.3377139504156679
|
|
BIN
wyk/reglin.png
Normal file
After Width: | Height: | Size: 161 KiB |
BIN
wyk/reglog.png
Normal file
After Width: | Height: | Size: 140 KiB |
BIN
wyk/rnn.png
Normal file
After Width: | Height: | Size: 177 KiB |
BIN
wyk/saddle_point_evaluation_optimizers.gif
Normal file
After Width: | Height: | Size: 714 KiB |
BIN
wyk/sds.png
Normal file
After Width: | Height: | Size: 18 KiB |
BIN
wyk/skipgram.png
Normal file
After Width: | Height: | Size: 142 KiB |
BIN
wyk/terms-cloud.png
Normal file
After Width: | Height: | Size: 29 KiB |
176
wyk/terms-cloud.svg
Normal file
@ -0,0 +1,176 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="800"
|
||||||
|
height="600"
|
||||||
|
viewBox="0 0 211.66667 158.75"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="0.92.3 (2405546, 2018-03-11)"
|
||||||
|
sodipodi:docname="terms-cloud.svg"
|
||||||
|
inkscape:export-filename="/home/pawel/umz20/wyk/terms-cloud.png"
|
||||||
|
inkscape:export-xdpi="96"
|
||||||
|
inkscape:export-ydpi="96">
|
||||||
|
<defs
|
||||||
|
id="defs2" />
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="1.25625"
|
||||||
|
inkscape:cx="400"
|
||||||
|
inkscape:cy="300"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
units="px"
|
||||||
|
inkscape:window-width="1920"
|
||||||
|
inkscape:window-height="995"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="0"
|
||||||
|
inkscape:window-maximized="1" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(0,-138.25001)">
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="149.19522"
|
||||||
|
y="249.7406"
|
||||||
|
id="text819"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="149.19522"
|
||||||
|
y="249.7406"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332"
|
||||||
|
id="tspan856">SZTUCZNA INTELIGENCJA</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff0000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="114.21994"
|
||||||
|
y="173.57338"
|
||||||
|
id="text819-6"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7"
|
||||||
|
x="114.21994"
|
||||||
|
y="173.57338"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332">UCZENIE MASZYNOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="114.21994"
|
||||||
|
y="179.29019"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332"
|
||||||
|
id="tspan858" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#008000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="151.65666"
|
||||||
|
y="198.03372"
|
||||||
|
id="text819-6-3"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="151.65666"
|
||||||
|
y="198.03372"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6">SIECI NEURONOWE</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff00ff;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="41.701218"
|
||||||
|
y="246.57816"
|
||||||
|
id="text819-6-3-9"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="41.701218"
|
||||||
|
y="246.57816"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff00ff;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6-2">UCZENIE GŁĘBOKIE</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="170.99191"
|
||||||
|
y="275.87283"
|
||||||
|
id="text959"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan957"
|
||||||
|
x="170.99191"
|
||||||
|
y="279.61835"
|
||||||
|
style="stroke-width:0.26458332" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="74.455154"
|
||||||
|
y="225.7178"
|
||||||
|
id="text819-6-3-9-0"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="74.455154"
|
||||||
|
y="225.7178"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#000000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6-2-3">DATA SCIENCE</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="75.510941"
|
||||||
|
y="190.65967"
|
||||||
|
id="text819-3"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="75.510941"
|
||||||
|
y="190.65967"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332"
|
||||||
|
id="tspan856-7">ARTIFICIAL INTELLIGENCE</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff0000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="177.06129"
|
||||||
|
y="261.40646"
|
||||||
|
id="text819-6-5"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="177.06129"
|
||||||
|
y="261.40646"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-5">MACHINE LEARNING</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#008000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="155.98636"
|
||||||
|
y="162.93501"
|
||||||
|
id="text819-6-3-6"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="155.98636"
|
||||||
|
y="162.93501"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6-9">NEURAL NETWORKS</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff00ff;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="138.03635"
|
||||||
|
y="222.5239"
|
||||||
|
id="text819-6-3-9-1"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="138.03635"
|
||||||
|
y="222.5239"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff00ff;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6-2-7">DEEP LEARNING</tspan></text>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 8.7 KiB |
BIN
wyk/venn-ai-ml-nn-dl-ds.png
Normal file
After Width: | Height: | Size: 79 KiB |
178
wyk/venn-ai-ml-nn-dl-ds.svg
Normal file
@ -0,0 +1,178 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="800"
|
||||||
|
height="600"
|
||||||
|
viewBox="0 0 211.66667 158.75"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="0.92.3 (2405546, 2018-03-11)"
|
||||||
|
sodipodi:docname="venn-ai-ml-nn-dl-ds.svg"
|
||||||
|
inkscape:export-filename="/home/pawel/umz20/wyk/venn-ai-ml-nn-dl-ds.png"
|
||||||
|
inkscape:export-xdpi="96"
|
||||||
|
inkscape:export-ydpi="96">
|
||||||
|
<defs
|
||||||
|
id="defs2" />
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="1.25625"
|
||||||
|
inkscape:cx="105.87065"
|
||||||
|
inkscape:cy="298.80597"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
units="px"
|
||||||
|
inkscape:window-width="1920"
|
||||||
|
inkscape:window-height="995"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="0"
|
||||||
|
inkscape:window-maximized="1" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title />
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(0,-138.25001)">
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815"
|
||||||
|
cx="105.83334"
|
||||||
|
cy="216.34158"
|
||||||
|
r="76.709419" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
id="text819"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332">SZTUCZNA INTELIGENCJA</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="163.27353"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332"
|
||||||
|
id="tspan856">(ARTIFICIAL INTELLIGENCE)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3"
|
||||||
|
cy="227.69496"
|
||||||
|
cx="105.83334"
|
||||||
|
r="62.887901" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff0000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
id="text819-6"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332">UCZENIE MASZYNOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.77408"
|
||||||
|
y="187.8017"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332"
|
||||||
|
id="tspan858">(MACHINE LEARNING)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#008000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3-5"
|
||||||
|
r="48.474037"
|
||||||
|
cy="238.15984"
|
||||||
|
cx="105.83334" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#008000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="205.68544"
|
||||||
|
id="text819-6-3"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7-5"
|
||||||
|
x="105.76719"
|
||||||
|
y="205.68544"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332">SIECI NEURONOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="212.741"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6">(NEURAL NETWORKS)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#ff00ff;stroke-width:1.05150509;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3-5-2"
|
||||||
|
r="33.738243"
|
||||||
|
cy="248.52597"
|
||||||
|
cx="105.83334" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff00ff;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.77408"
|
||||||
|
y="238.65964"
|
||||||
|
id="text819-6-3-9"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7-5-1"
|
||||||
|
x="105.77408"
|
||||||
|
y="238.65964"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff00ff;stroke-width:0.26458332">UCZENIE GŁĘBOKIE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.77408"
|
||||||
|
y="245.71519"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff00ff;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6-2">(DEEP LEARNING)</tspan></text>
|
||||||
|
<ellipse
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#000000;stroke-width:1.05150509;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3-5-2-7"
|
||||||
|
cy="267.38251"
|
||||||
|
cx="165.4633"
|
||||||
|
rx="42.623505"
|
||||||
|
ry="27.024935" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="170.99191"
|
||||||
|
y="275.87283"
|
||||||
|
id="text959"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan957"
|
||||||
|
x="170.99191"
|
||||||
|
y="279.61835"
|
||||||
|
style="stroke-width:0.26458332" /></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="180.80518"
|
||||||
|
y="278.14969"
|
||||||
|
id="text819-6-3-9-0"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="180.80518"
|
||||||
|
y="278.14969"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#000000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6-2-3">DATA SCIENCE</tspan></text>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 8.6 KiB |
BIN
wyk/venn-ai-ml-nn-dl.png
Normal file
After Width: | Height: | Size: 72 KiB |
160
wyk/venn-ai-ml-nn-dl.svg
Normal file
@ -0,0 +1,160 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="800"
|
||||||
|
height="600"
|
||||||
|
viewBox="0 0 211.66667 158.75"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="0.92.3 (2405546, 2018-03-11)"
|
||||||
|
sodipodi:docname="venn-ai-ml-nn-dl.svg"
|
||||||
|
inkscape:export-filename="/home/pawel/umz20/wyk/ai-venn.png"
|
||||||
|
inkscape:export-xdpi="96"
|
||||||
|
inkscape:export-ydpi="96">
|
||||||
|
<defs
|
||||||
|
id="defs2" />
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="1.25625"
|
||||||
|
inkscape:cx="400"
|
||||||
|
inkscape:cy="300"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
units="px"
|
||||||
|
inkscape:window-width="1920"
|
||||||
|
inkscape:window-height="995"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="0"
|
||||||
|
inkscape:window-maximized="1" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(0,-138.25001)">
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815"
|
||||||
|
cx="105.83334"
|
||||||
|
cy="216.34158"
|
||||||
|
r="76.709419" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
id="text819"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332">SZTUCZNA INTELIGENCJA</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="163.27353"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332"
|
||||||
|
id="tspan856">(ARTIFICIAL INTELLIGENCE)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3"
|
||||||
|
cy="227.69496"
|
||||||
|
cx="105.83334"
|
||||||
|
r="62.887901" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff0000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
id="text819-6"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332">UCZENIE MASZYNOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.77408"
|
||||||
|
y="187.8017"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332"
|
||||||
|
id="tspan858">(MACHINE LEARNING)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#008000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3-5"
|
||||||
|
r="48.474037"
|
||||||
|
cy="238.15984"
|
||||||
|
cx="105.83334" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#008000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="205.68544"
|
||||||
|
id="text819-6-3"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7-5"
|
||||||
|
x="105.76719"
|
||||||
|
y="205.68544"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332">SIECI NEURONOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="212.741"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6">(NEURAL NETWORKS)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#ff00ff;stroke-width:1.05150509;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3-5-2"
|
||||||
|
r="33.738243"
|
||||||
|
cy="248.52597"
|
||||||
|
cx="105.83334" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff00ff;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.77408"
|
||||||
|
y="238.65964"
|
||||||
|
id="text819-6-3-9"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7-5-1"
|
||||||
|
x="105.77408"
|
||||||
|
y="238.65964"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff00ff;stroke-width:0.26458332">UCZENIE GŁĘBOKIE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.77408"
|
||||||
|
y="245.71519"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff00ff;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6-2">(DEEP LEARNING)</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="170.99191"
|
||||||
|
y="275.87283"
|
||||||
|
id="text959"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan957"
|
||||||
|
x="170.99191"
|
||||||
|
y="279.61835"
|
||||||
|
style="stroke-width:0.26458332" /></text>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 7.6 KiB |
BIN
wyk/venn-ai-ml-nn.png
Normal file
After Width: | Height: | Size: 60 KiB |
138
wyk/venn-ai-ml-nn.svg
Normal file
@ -0,0 +1,138 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="800"
|
||||||
|
height="600"
|
||||||
|
viewBox="0 0 211.66667 158.75"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="0.92.3 (2405546, 2018-03-11)"
|
||||||
|
sodipodi:docname="venn-ai-ml-nn.svg"
|
||||||
|
inkscape:export-filename="/home/pawel/umz20/wyk/venn-ai-ml-nn-dl.png"
|
||||||
|
inkscape:export-xdpi="96"
|
||||||
|
inkscape:export-ydpi="96">
|
||||||
|
<defs
|
||||||
|
id="defs2" />
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="1.25625"
|
||||||
|
inkscape:cx="400"
|
||||||
|
inkscape:cy="300"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
units="px"
|
||||||
|
inkscape:window-width="1920"
|
||||||
|
inkscape:window-height="995"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="0"
|
||||||
|
inkscape:window-maximized="1" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(0,-138.25001)">
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815"
|
||||||
|
cx="105.83334"
|
||||||
|
cy="216.34158"
|
||||||
|
r="76.709419" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
id="text819"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332">SZTUCZNA INTELIGENCJA</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="163.27353"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332"
|
||||||
|
id="tspan856">(ARTIFICIAL INTELLIGENCE)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3"
|
||||||
|
cy="227.69496"
|
||||||
|
cx="105.83334"
|
||||||
|
r="62.887901" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff0000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
id="text819-6"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332">UCZENIE MASZYNOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.77408"
|
||||||
|
y="187.8017"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332"
|
||||||
|
id="tspan858">(MACHINE LEARNING)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#008000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3-5"
|
||||||
|
r="48.474037"
|
||||||
|
cy="238.15984"
|
||||||
|
cx="105.83334" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#008000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="205.68544"
|
||||||
|
id="text819-6-3"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7-5"
|
||||||
|
x="105.76719"
|
||||||
|
y="205.68544"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332">SIECI NEURONOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="212.741"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#008000;stroke-width:0.26458332"
|
||||||
|
id="tspan858-6">(NEURAL NETWORKS)</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="170.99191"
|
||||||
|
y="275.87283"
|
||||||
|
id="text959"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan957"
|
||||||
|
x="170.99191"
|
||||||
|
y="279.61835"
|
||||||
|
style="stroke-width:0.26458332" /></text>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 6.2 KiB |
BIN
wyk/venn-ai-ml.png
Normal file
After Width: | Height: | Size: 40 KiB |
116
wyk/venn-ai-ml.svg
Normal file
@ -0,0 +1,116 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="800"
|
||||||
|
height="600"
|
||||||
|
viewBox="0 0 211.66667 158.75"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="0.92.3 (2405546, 2018-03-11)"
|
||||||
|
sodipodi:docname="venn-ai-ml.svg"
|
||||||
|
inkscape:export-filename="/home/pawel/umz20/wyk/venn-ai-ml-nn.png"
|
||||||
|
inkscape:export-xdpi="96"
|
||||||
|
inkscape:export-ydpi="96">
|
||||||
|
<defs
|
||||||
|
id="defs2" />
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="1.25625"
|
||||||
|
inkscape:cx="400"
|
||||||
|
inkscape:cy="300"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
units="px"
|
||||||
|
inkscape:window-width="1920"
|
||||||
|
inkscape:window-height="995"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="0"
|
||||||
|
inkscape:window-maximized="1" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(0,-138.25001)">
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815"
|
||||||
|
cx="105.83334"
|
||||||
|
cy="216.34158"
|
||||||
|
r="76.709419" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
id="text819"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332">SZTUCZNA INTELIGENCJA</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="163.27353"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332"
|
||||||
|
id="tspan856">(ARTIFICIAL INTELLIGENCE)</tspan></text>
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#ff0000;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815-3"
|
||||||
|
cy="227.69496"
|
||||||
|
cx="105.83334"
|
||||||
|
r="62.887901" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#ff0000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
id="text819-6"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817-7"
|
||||||
|
x="105.77408"
|
||||||
|
y="180.74614"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332">UCZENIE MASZYNOWE</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.77408"
|
||||||
|
y="187.8017"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#ff0000;stroke-width:0.26458332"
|
||||||
|
id="tspan858">(MACHINE LEARNING)</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="170.99191"
|
||||||
|
y="275.87283"
|
||||||
|
id="text959"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan957"
|
||||||
|
x="170.99191"
|
||||||
|
y="279.61835"
|
||||||
|
style="stroke-width:0.26458332" /></text>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 4.9 KiB |
BIN
wyk/venn-ai.png
Normal file
After Width: | Height: | Size: 23 KiB |
94
wyk/venn-ai.svg
Normal file
@ -0,0 +1,94 @@
|
|||||||
|
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
|
||||||
|
<!-- Created with Inkscape (http://www.inkscape.org/) -->
|
||||||
|
|
||||||
|
<svg
|
||||||
|
xmlns:dc="http://purl.org/dc/elements/1.1/"
|
||||||
|
xmlns:cc="http://creativecommons.org/ns#"
|
||||||
|
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
|
||||||
|
xmlns:svg="http://www.w3.org/2000/svg"
|
||||||
|
xmlns="http://www.w3.org/2000/svg"
|
||||||
|
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
|
||||||
|
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
|
||||||
|
width="800"
|
||||||
|
height="600"
|
||||||
|
viewBox="0 0 211.66667 158.75"
|
||||||
|
version="1.1"
|
||||||
|
id="svg8"
|
||||||
|
inkscape:version="0.92.3 (2405546, 2018-03-11)"
|
||||||
|
sodipodi:docname="venn-ai.svg"
|
||||||
|
inkscape:export-filename="/home/pawel/umz20/wyk/venn-ai.png"
|
||||||
|
inkscape:export-xdpi="96"
|
||||||
|
inkscape:export-ydpi="96">
|
||||||
|
<defs
|
||||||
|
id="defs2" />
|
||||||
|
<sodipodi:namedview
|
||||||
|
id="base"
|
||||||
|
pagecolor="#ffffff"
|
||||||
|
bordercolor="#666666"
|
||||||
|
borderopacity="1.0"
|
||||||
|
inkscape:pageopacity="0.0"
|
||||||
|
inkscape:pageshadow="2"
|
||||||
|
inkscape:zoom="1.25625"
|
||||||
|
inkscape:cx="400"
|
||||||
|
inkscape:cy="300"
|
||||||
|
inkscape:document-units="mm"
|
||||||
|
inkscape:current-layer="layer1"
|
||||||
|
showgrid="false"
|
||||||
|
units="px"
|
||||||
|
inkscape:window-width="1920"
|
||||||
|
inkscape:window-height="995"
|
||||||
|
inkscape:window-x="0"
|
||||||
|
inkscape:window-y="0"
|
||||||
|
inkscape:window-maximized="1" />
|
||||||
|
<metadata
|
||||||
|
id="metadata5">
|
||||||
|
<rdf:RDF>
|
||||||
|
<cc:Work
|
||||||
|
rdf:about="">
|
||||||
|
<dc:format>image/svg+xml</dc:format>
|
||||||
|
<dc:type
|
||||||
|
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
|
||||||
|
<dc:title></dc:title>
|
||||||
|
</cc:Work>
|
||||||
|
</rdf:RDF>
|
||||||
|
</metadata>
|
||||||
|
<g
|
||||||
|
inkscape:label="Layer 1"
|
||||||
|
inkscape:groupmode="layer"
|
||||||
|
id="layer1"
|
||||||
|
transform="translate(0,-138.25001)">
|
||||||
|
<circle
|
||||||
|
style="opacity:1;fill:none;fill-opacity:1;stroke:#0000ff;stroke-width:1;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;paint-order:fill markers stroke"
|
||||||
|
id="path815"
|
||||||
|
cx="105.83334"
|
||||||
|
cy="216.34158"
|
||||||
|
r="76.709419" />
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
id="text819"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan817"
|
||||||
|
x="105.76719"
|
||||||
|
y="156.21797"
|
||||||
|
style="font-style:normal;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332">SZTUCZNA INTELIGENCJA</tspan><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
x="105.76719"
|
||||||
|
y="163.27353"
|
||||||
|
style="font-style:italic;font-variant:normal;font-weight:bold;font-stretch:normal;font-size:5.64444447px;font-family:Arial;-inkscape-font-specification:Arial;text-align:center;text-anchor:middle;fill:#0000ff;stroke-width:0.26458332"
|
||||||
|
id="tspan856">(ARTIFICIAL INTELLIGENCE)</tspan></text>
|
||||||
|
<text
|
||||||
|
xml:space="preserve"
|
||||||
|
style="font-style:normal;font-weight:normal;font-size:4.23333311px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
|
||||||
|
x="170.99191"
|
||||||
|
y="275.87283"
|
||||||
|
id="text959"><tspan
|
||||||
|
sodipodi:role="line"
|
||||||
|
id="tspan957"
|
||||||
|
x="170.99191"
|
||||||
|
y="279.61835"
|
||||||
|
style="stroke-width:0.26458332" /></text>
|
||||||
|
</g>
|
||||||
|
</svg>
|
After Width: | Height: | Size: 3.5 KiB |
BIN
wyk/we_autoencoder.png
Normal file
After Width: | Height: | Size: 91 KiB |