Compare commits

...

83 Commits

Author SHA1 Message Date
72db2aa687 Drobne poprawki w wykładzie 2021-10-05 21:44:46 +02:00
Jakub Pokrywka
f804311da1 reformat 2021-10-05 15:28:02 +02:00
Jakub Pokrywka
3c0223d434 reformat 2021-10-05 15:04:58 +02:00
Jakub Pokrywka
0f34dcdeb4 Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-09-28 09:13:36 +02:00
Jakub Pokrywka
5acffc0265 add 03 2021-09-27 14:02:30 +02:00
Jakub Pokrywka
4437a7f71b add ipynb to md conversion 2021-09-27 13:29:40 +02:00
Jakub Pokrywka
ad34aaeae0 add metadata to cw 2021-09-27 12:34:44 +02:00
1836dc18c1 Remove too long text material 2021-09-27 08:10:10 +02:00
fedffd5456 Add metadata 2021-09-27 07:57:37 +02:00
9a61b2c06c Add helper script 2021-09-27 07:43:02 +02:00
22f1e74aef Fixes 2021-09-27 07:42:48 +02:00
72c6fbcbf6 Fixes 2021-09-27 07:36:37 +02:00
a45fd570e5 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-09-27 06:42:33 +02:00
Jakub Pokrywka
cc675a8591 Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-07-12 12:44:57 +02:00
Jakub Pokrywka
93ea351350 split to 14 and 15 2021-07-12 12:44:24 +02:00
kubapok
2cd5bef0a0 Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-06-23 10:08:36 +02:00
kubapok
d3c996511c add bbc news train 2021-06-23 10:08:23 +02:00
kubapok
f3db74bfd3 add bbc news train 2021-06-23 10:07:07 +02:00
kubapok
691dd36092 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks-pub 2021-06-23 10:02:16 +02:00
kubapok
2a031bc8d8 add similarity search 2021-06-23 10:01:55 +02:00
077c2b6f90 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-06-22 21:16:11 +02:00
97d92d38e8 15 2021-06-22 21:15:58 +02:00
Jakub Pokrywka
9d96c9ec4f Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-06-16 15:14:53 +02:00
Jakub Pokrywka
f1bc633468 add transformery2 2021-06-16 15:14:42 +02:00
78fb510cba 14 2021-06-14 15:39:15 +02:00
edf3811cd7 new 2021-06-14 08:23:02 +02:00
89155edea0 Up 2021-06-12 15:47:37 +02:00
Jakub Pokrywka
0ea752f091 add transformers 2021-06-09 12:46:15 +02:00
0d10bc2fca Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-06-09 12:43:37 +02:00
429caef49c Atencja 2021-06-09 12:43:29 +02:00
aebba6c18b Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-06-08 21:14:04 +02:00
98012914c4 bpe 2021-06-08 21:13:39 +02:00
kubapok
af907e23af Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-06-02 13:27:45 +02:00
kubapok
15854bb61f rnn 2021-06-02 13:27:34 +02:00
a004360ec5 11 2021-06-02 13:16:24 +02:00
1071d5ba44 RNN 2021-06-02 13:09:09 +02:00
86a5fbe20c Update 2021-06-01 10:38:23 +02:00
87e0faf1a2 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-26 15:56:33 +02:00
a6a4106844 up 2021-05-26 15:56:22 +02:00
kubapok
d76157a5a5 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-26 14:36:53 +02:00
kubapok
6099566d29 crf 2021-05-26 14:36:47 +02:00
340197a94c fixes 2021-05-26 13:48:10 +02:00
54f52bbc6a Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-26 13:29:59 +02:00
10981fc2bc CRF cd. 2021-05-26 13:29:45 +02:00
kubapok
22c32c8a43 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-26 12:44:01 +02:00
kubapok
da334a57fe add crf in progress 2021-05-26 12:43:49 +02:00
90b0947029 up 2021-05-19 16:04:43 +02:00
ebfd32b60d up 2021-05-19 16:04:21 +02:00
b40e011c66 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks-pub 2021-05-19 13:34:11 +02:00
ce461797fb Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-19 13:33:40 +02:00
a50afdf750 Klasyfikacja wieloklasowa 2021-05-19 13:33:08 +02:00
65e28bbbb9 org 2021-05-19 13:21:13 +02:00
kubapok
db2fad735e Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-19 10:32:50 +02:00
kubapok
d2bf465d4a add seq labeling; 2021-05-19 10:32:14 +02:00
kubapok
81e0329199 seq labelling work in progress 2021-05-17 15:24:29 +02:00
kubapok
a8fd576d16 add seq labeling template 2021-05-11 12:37:31 +02:00
kubapok
4fa73c353a Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks-pub 2021-05-11 12:28:10 +02:00
kubapok
a2d7d975ff Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-11 12:28:02 +02:00
kubapok
36155ad5b4 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-11 12:27:18 +02:00
kubapok
c9825d8d60 minor fix prev 2021-05-11 12:27:10 +02:00
4dd0ace030 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks-pub 2021-05-10 13:37:31 +02:00
517fb0dae8 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-10 13:37:06 +02:00
91c4d13617 Up linear regression 2021-05-10 13:36:40 +02:00
kubapok
a0ca3e657d Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-10 10:57:01 +02:00
kubapok
54ab26b5f9 fix nn 2021-05-10 10:55:55 +02:00
9866eb875e Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks-pub 2021-05-05 13:36:00 +02:00
3d70d8a7ec Przykłady w PyTorchu 2021-05-05 13:35:25 +02:00
kubapok
550a399bff Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-05-04 23:03:11 +02:00
kubapok
8f531a680c add regresja logistyczna 2021-05-04 23:02:28 +02:00
b5d6d177af Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-04-27 19:00:56 +02:00
c5864ab9ad wykład 8 2021-04-27 19:00:36 +02:00
724be2f486 Bernoulli 2021-04-27 16:50:25 +02:00
kubapok
dfd6873823 Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-04-27 10:11:27 +02:00
kubapok
d5a60b064e add regresja liniowa 2021-04-27 10:11:08 +02:00
Jakub Pokrywka
57dc700d51 Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-04-21 13:54:16 +02:00
Jakub Pokrywka
84426fb38b naive bayes description fix 2021-04-21 13:53:48 +02:00
Jakub Pokrywka
1c6482b8a1 Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-04-21 12:24:40 +02:00
Jakub Pokrywka
f351417476 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-04-21 12:20:12 +02:00
Jakub Pokrywka
b7ebc44cc2 naive bayes 2021-04-21 12:19:58 +02:00
2687aaa426 Merge branch 'master' of git.wmi.amu.edu.pl:filipg/aitech-eks 2021-04-21 08:32:51 +02:00
094f2713ba Naiwny 2021-04-21 08:32:06 +02:00
Jakub Pokrywka
8ac2210b6f Merge git.wmi.amu.edu.pl:filipg/aitech-eks 2021-04-16 09:51:50 +02:00
Jakub Pokrywka
56434f096b change nda scoring 2021-04-16 09:51:30 +02:00
108 changed files with 27634 additions and 5815 deletions

49
add-metadata.py Executable file
View File

@ -0,0 +1,49 @@
#!/usr/bin/env python3
#procedura napisywania plików ipynb (generowanie nagłówka i metadanych)
import json
import sys
import re
def modjup(filen,numer,tytul,typ,author,email,lang,title,year):
zerocell=['![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n',
'<div class="alert alert-block alert-info">\n',
'<h1> %s </h1>\n'%(title),
'<h2> %s. <i>%s</i> [%s]</h2> \n'%(numer,tytul,typ),
'<h3> %s (%s)</h3>\n'%(author,year),
'</div>\n',
'\n',
'![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)']
zerodict={'cell_type': 'markdown','metadata': {'collapsed': False},'source': zerocell}
with open(filen, 'r+',encoding='utf-8') as f:
ll=json.load(f)
ll["metadata"]["author"]=author
ll["metadata"]["email"]=email
ll["metadata"]["lang"]=lang
subtitle="%s.%s[%s]"%(numer,tytul,typ)
ll["metadata"]["subtitle"]=subtitle
ll["metadata"]["title"]=title
ll["metadata"]["year"]=year
if not(ll['cells'][0]['source'][0]==zerocell[0]):
ll['cells'].insert(0,zerodict)
else:
ll['cells'][0]=zerodict
f.seek(0)
json.dump(ll,f,indent=4)
#zmodyfikuj te dane
filen=sys.argv[1]
numer=re.match(r'^(?:\D+/)?0*(\d+)', filen).group(1)
tytul=sys.argv[2]
typ="wykład"
author="Filip Graliński"
email="filipg@amu.edu.pl"
lang= "pl"
title="Ekstrakcja informacji"
year="2021"
#uruchom procedurę
modjup(filen,numer,tytul,typ,author,email,lang,title,year)

7
convert_ipynb_to_md.sh Normal file
View File

@ -0,0 +1,7 @@
set -ex
FILEIPYNB=$1
jupyter nbconvert --to script $1
FILEPY=$(echo $FILEIPYNB | sed 's/.ipynb$/.py/')
FILEMD=$(echo $FILEIPYNB | sed 's/.ipynb$/.md/')
python convert_python_to_markdown.py "$FILEPY" "$FILEMD"

View File

@ -0,0 +1,13 @@
import sys
from bs4 import BeautifulSoup
from markdown import markdown
with open(sys.argv[1]) as f_in, open(sys.argv[2],'w') as f_out:
for i, line in enumerate(f_in):
if i in (1,2):
continue
if line[:2] == "# " and line[:5] != "# In[":
text = line[:2]
f_out.write(line[2:])

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 0. <i>Informacje na temat przedmiotu</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -57,21 +71,17 @@
"\n",
"**Żeby zaliczyć przedmiot należy pojawiać się na laboratoriach. Maksymalna liczba nieobecności to 3. Obecność będę sprawdzał poprzez panel MS TEAMS, czyli będę sprawdzał czy ktoś jest wdzwoniony na ćwiczenia. Jeżeli kogoś nie będzie więcej niż 3 razy, to nie będzie miał zaliczonego przedmiotu** \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -83,7 +93,10 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"subtitle": "0.Informacje na temat przedmiotu[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,181 +0,0 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Opracować w języku Haskell wyspecjalizowanego robota pobierającego dane z konkretnego serwisu.\n",
"\n",
"Punkty: 80 (domyślnie - niektóre zadanie są trudniejsze, wówczas podaję osobno liczbę punktów)\n",
"\n",
"Ogólne zasady:\n",
"\n",
"* pobieramy informacje (metadane) o plikach PDF, DjVU, JPG itp, ale nie same pliki,\n",
"* nie pobierajmy całego serwisu, tylko tyle, ile trzeba, by pobrać metadane o interesujących nas zasobach,\n",
"* interesują nas tylko teksty polskie, jeśli nie jest to trudne, należy odfiltrować publikacje obcojęzyczne,\n",
"* staramy się ustalać datę z możliwie dużą dokładnością.\n",
"\n",
"Sposób pracy:\n",
"\n",
"0. Pobrać Haskell Stack\n",
"\n",
"~~~\n",
"curl -sSL https://get.haskellstack.org/ | sh -s - -d ~/bin\n",
"~~~\n",
"\n",
"Na fizycznych komputerach wydziałowych są błędnie ustawione prawa dostępu na dyskach sieciowych, Haskell Stack musi działać na fizycznym dysku:\n",
"\n",
"~~~\n",
"rm -rf /mnt/poligon/.stack\n",
"mkdir /mnt/poligon/.stack\n",
"mv ~/.stack ~/.stack-bak # gdyby już był... proszę się nie przejmować błędem\n",
"ln -s /mnt/poligon/.stack ~/.stack\n",
"~~~\n",
"\n",
"1. Pobrać repozytorium:\n",
"\n",
"~~~\n",
"git clone https://git.wmi.amu.edu.pl/filipg/twilight-library.git\n",
"~~~\n",
"\n",
"2. Wypchnąć na początek do swojego repozytorium (trzeba sobie najpierw założyć to repozytorium na <https://git.wmi.amu.edu.pl>)\n",
"\n",
"~~~\n",
"cd twilight-library\n",
"git remote set-url origin git@git.wmi.amu.edu.pl:YOURID/twilight-library\n",
"git push origin master\n",
"git remote add mother git://gonito.net/twilight-library\n",
"~~~\n",
"\n",
"3. Zobacz, czy przykładowy robot dla strony z „Alamanachem Muszyny” działa:\n",
"\n",
"~~~\n",
"~/bin/stack install # może trwać długo za pierwszym razem\n",
"~/bin/stack exec almanachmuszyny\n",
"~~~\n",
"\n",
"\n",
"W razie problemów z instalacją:\n",
"\n",
"~~~\n",
"sudo apt install libpcre3 libpcre3-dev\n",
"~~~\n",
"\n",
"3. Opracuj swojego robota wzorując się na pliku `almanachmuszyny.hs`.\n",
" (Ale dodaj swój plik, nie zmieniaj `almanachmuszyny.hs`!)\n",
"\n",
"4. Dopisz specyfikację swojego robota do `shadow-library.cabal`.\n",
"\n",
"5. Pracuj nad swoim robotem, uruchamiaj go w następujący sposób:\n",
"\n",
"~~~\n",
"~/bin/stack install\n",
"~/bin/stack exec mojrobot\n",
"~~~\n",
"\n",
"(Tzn. nie nazywaj go „mojrobot”, tylko użyj jakieś sensownej nazwy.)\n",
"\n",
"6. Jeśli publikacja (np. pojedynczy numer gazety) składa się z wielu plików, powinien zostać wygenerowany jeden\n",
"rekord, w `finalUrl` powinny znaleźć się URL do poszczególnych stron (np. plików JPR) oddzielone ` // `.\n",
"\n",
"7. Po zakończeniu prac prześlij mejla do prowadzącego zajęcia z URL-em do swojego repozytorium.\n",
"\n",
"Lista serwisów do wyboru (na każdy serwis 1 osoba):\n",
"\n",
"1. [Teksty Drugie](http://tekstydrugie.pl)\n",
"2. [Archiwum Inspektora Pracy](https://www.pip.gov.pl/pl/inspektor-pracy/66546,archiwum-inspektora-pracy-.html)\n",
"3. [Medycyna Weterynaryjna](http://www.medycynawet.edu.pl/archives) — również historyczne zasoby od 1945 roku, **120 punktów**\n",
"4. [Polskie Towarzystwo Botaniczne](https://pbsociety.org.pl/default/dzialalnosc-wydawnicza/) — wszystkie dostępne zdigitalizowane publikacje!, **130 punktow**\n",
"5. [Wieści Pepowa](http://archiwum2019.pepowo.pl/news/c-10/gazeta) — nie pominąć strony nr 2 z wynikami, **110 punktów**\n",
"6. [Czasopismo Kosmos](http://kosmos.icm.edu.pl/)\n",
"7. [Czasopismo Wszechświat](http://www.ptpk.org/archiwum.html)\n",
"8. [Czasopisma polonijne we Francji](https://argonnaute.parisnanterre.fr/ark:/14707/a011403267917yQQFAS) — najlepiej w postaci PDF-ów, jak np. [https://argonnaute.parisnanterre.fr/medias/customer_3/periodique/immi_pol_lotmz1_pdf/BDIC_GFP_2929_1945_039.pdf](), **220 punktów**\n",
"9. [Muzeum Sztuki — czasopisma](https://zasoby.msl.org.pl/mobjects/show), **220 punktów**, publikacje, teksty, czasopisma, wycinki\n",
"10. [Wiadomości Urzędu Patentowego](https://grab.uprp.pl/sites/Wydawnictwa/WydawnictwaArchiwum/WydawnictwaArchiwum/Forms/AllItems.aspx)\n",
"11. [Czas, czasopismo polonijne](https://digitalcollections.lib.umanitoba.ca/islandora/object/uofm:2222545), **140 punktów** S.G.\n",
"12. [Stenogramy Okrągłego Stołu](http://okragly-stol.pl/stenogramy/), **110 punktów**\n",
"13. [Nasze Popowice](https://smpopowice.pl/index.php/numery-archiwalne)\n",
"14. [Czasopisma entomologiczne](http://pte.au.poznan.pl/)\n",
"15. [Wiadomości matematyczne](https://wydawnictwa.ptm.org.pl/index.php/wiadomosci-matematyczne/issue/archive?issuesPage=2), **120 punktow**\n",
"16. [Alkoholizm i Narkomania](http://www.ain.ipin.edu.pl/archiwum-starsze.html)\n",
"17. [Czasopismo Etyka](https://etyka.uw.edu.pl/tag/etyka-562018/), O.K.\n",
"18. [Skup makulatury](https://chomikuj.pl/skup.makulatury.prl), **250 punktów**\n",
"19. [Hermes](https://chomikuj.pl/hermes50-1) i https://chomikuj.pl/hermes50-2, **250 punktów**\n",
"20. [E-dziennik Województwa Mazowieckiego](https://edziennik.mazowieckie.pl/actbymonths) **150 punktów**\n",
"21. [Czasopismo Węgiel Brunatny](http://www.ppwb.org.pl/wegiel_brunatny)\n",
"22. [Gazeta GUM](https://gazeta.gumed.edu.pl/61323.html)\n",
"23. [Nowiny Andrychowskie](https://radioandrychow.pl/nowiny/)\n",
"24. [Kawęczyniak](http://bip.kaweczyn.pl/kaweczyn/pl/dla-mieszkanca/publikacje/archiwalne-numery-kaweczyniaka-rok-1995-2005/kaweczyniaki-rok-1997.html)\n",
"25. [Zbór Chrześcijański w Bielawia](http://zborbielawa.pl/archiwum/)\n",
"26. [Gazeta Rytwiańska](http://www.rytwiany.com.pl/index.php?sid=5)\n",
"27. [Nasze Popowice](https://smpopowice.pl/gazeta/2005_12_nasze-popowice-nr_01.pdf)\n",
"28. [Echo Chełmka](http://moksir.chelmek.pl/o-nas/echo-chelmka)\n",
"29. [Głos Świdnika](http://s.bibliotekaswidnik.pl/index.php/archwium/116-glos-swidnika) **100 punktów**\n",
"30. [Aneks](https://aneks.kulturaliberalna.pl/archiwum-aneksu/) **90 punktów**\n",
"31. [Teatr Lalel](http://polunima.pl/teatr-lalek)\n",
"32. [Biuletyn Bezpieczna Chemia](https://www.pipc.org.pl/publikacje/biuletyn-bezpieczna-chemia)\n",
"33. [Głos Maszynisty](https://zzm.org.pl/glos-maszynisty/)\n",
"34. [Kultura Paryska](https://www.kulturaparyska.com/pl/index), całe archiwum z książkami i innymi czasopismami, **180 punktów**\n",
"35. [Gazeta Fabryczna - Kraśnik](https://80lat.flt.krasnik.pl/index.php/gazeta-fabryczna/) **120 punktów**\n",
"36. [Artykuły o Jujutsu](http://www.kobudo.pl/artykuly_jujutsu.html)\n",
"37. [Wycinki o Taekwon-Do](https://www2.pztkd.lublin.pl/archpras.html#z1996)\n",
"38. [Materiały o kolejnictwie](https://enkol.pl/Strona_g%C5%82%C3%B3wna) **180 punktów**\n",
"39. [Centralny Instytut Ochrony Pracy](http://archiwum.ciop.pl/), znaleźć wszystkie publikacje typu <http://archiwum.ciop.pl/44938>, wymaga trochę sprytu **130 punktów**\n",
"40. [Biblioteka Sejmowa - Zasoby Cyfrowe](https://biblioteka.sejm.gov.pl/zasoby_cyfrowe/), **200 punktów**\n",
"41. [Elektronika Praktyczna](https://ep.com.pl/archiwum), te numery, które dostępne w otwarty sposób, np. rok 1993\n",
"42. [Litewska Akademia Nauk](http://www.mab.lt/), tylko materiały w jęz. polskim, takie jak np.\n",
" <https://elibrary.mab.lt/handle/1/840>, **170 punktów**\n",
"43. [Litewska Biblioteka Cyfrowa](https://www.epaveldas.lt), wyłuskać tylko materiały w jęz. polskim, **190 punktów**\n",
"44. [Czasopisma Geologiczne](https://geojournals.pgi.gov.pl), **120 punktów**\n",
"45. [Czasopisma PTTK](https://www.czasopisma.centralnabibliotekapttk.pl/index.php?i3), **120 punktów**\n",
"46. [Czasopisma Polskiego Towarzystwa Dendrologicznego](https://www.ptd.pl/?page_id=7), **100 punktów**\n",
"47. [Kilka przedwojennych książek](https://dziemiela.com/documents.htm)\n",
"48. [Historia polskiej informatyki](http://klio.spit.iq.pl/a4-wyroby-polskiej-informatyki/a4-2-sprzet/) - wyjątkowo bez datowania\n",
"49. [Zeszyty Formacyjne Katolickiego Stowarzyszenia „Civitas Christania”](http://podkarpacki.civitaschristiana.pl/formacja/zeszyty-formacyjne/), tylko niektóre pliki można zdatować\n",
"50. [Józef Piłsudski Institute of America](https://archiwa.pilsudski.org/) - **220 punktów**\n",
"51. [Prasa podziemna — Częstochowa](http://www.podziemie.com.pl), również ulotki i inne materiały skanowane - **180 punktów**\n",
"52. [Tajemnica Atari](http://krap.pl/mirrorz/atari/horror.mirage.com.pl/pixel/), plik ZIP z DjVu\n",
"\n",
"\n",
"### F.A.Q.\n",
"\n",
"**P: Nie działają strony z protokołem https, co zrobić?**\n",
"\n",
"O: Trzeba użyć modułu opartego na bibliotece curl. Paczka Ubuntu została zainstalowana na komputerach wydziałowych. Na\n",
"swoim komputerze możemy zainstalować paczkę libcurl4-openssl-dev, a\n",
"następnie można sobie ściągnąć wersję twilight-library opartą na libcurl:\n",
"\n",
" git fetch git://gonito.net/twilight-library withcurl\n",
" git merge FETCH_HEAD\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 1. <i>Wyszukiwarki wprowadzenie</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -234,11 +248,14 @@
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -249,8 +266,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.5"
}
"version": "3.8.3"
},
"subtitle": "1.Wyszukiwarki wprowadzenie[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 2. <i>Wyszukiwarki roboty</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -262,21 +276,17 @@
"67. [Instytut Techniki Górniczej - wycinki](http://www.komag.gliwice.pl/archiwum/historia-komag)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -287,8 +297,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
"version": "3.8.3"
},
"subtitle": "2.Wyszukiwarki roboty[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 3. <i>tfidf (1)</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -1065,21 +1079,17 @@
"$|D|$ - ilość dokumentów w korpusie\n",
"$|\\{d : t_i \\in d \\}|$ - ilość dokumentów w korpusie, gdzie dany term występuje chociaż jeden raz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -1091,7 +1101,10 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"subtitle": "3.tfidf (1)[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 3. <i>tfidf (1)</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "code",
"execution_count": 1,
@ -46,11 +60,14 @@
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -62,7 +79,10 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"subtitle": "3.tfidf (1)[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 3. <i>tfidf (2)</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -434,217 +448,11 @@
},
{
"cell_type": "code",
"execution_count": 21,
"execution_count": null,
"metadata": {
"scrolled": false
"scrolled": true
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"From: ray@netcom.com (Ray Fischer)\n",
"Subject: Re: x86 ~= 680x0 ?? (How do they compare?)\n",
"Organization: Netcom. San Jose, California\n",
"Distribution: usa\n",
"Lines: 36\n",
"\n",
"dhk@ubbpc.uucp (Dave Kitabjian) writes ...\n",
">I'm sure Intel and Motorola are competing neck-and-neck for \n",
">crunch-power, but for a given clock speed, how do we rank the\n",
">following (from 1st to 6th):\n",
"> 486\t\t68040\n",
"> 386\t\t68030\n",
"> 286\t\t68020\n",
"\n",
"040 486 030 386 020 286\n",
"\n",
">While you're at it, where will the following fit into the list:\n",
"> 68060\n",
"> Pentium\n",
"> PowerPC\n",
"\n",
"060 fastest, then Pentium, with the first versions of the PowerPC\n",
"somewhere in the vicinity.\n",
"\n",
">And about clock speed: Does doubling the clock speed double the\n",
">overall processor speed? And fill in the __'s below:\n",
"> 68030 @ __ MHz = 68040 @ __ MHz\n",
"\n",
"No. Computer speed is only partly dependent of processor/clock speed.\n",
"Memory system speed play a large role as does video system speed and\n",
"I/O speed. As processor clock rates go up, the speed of the memory\n",
"system becomes the greatest factor in the overall system speed. If\n",
"you have a 50MHz processor, it can be reading another word from memory\n",
"every 20ns. Sure, you can put all 20ns memory in your computer, but\n",
"it will cost 10 times as much as the slower 80ns SIMMs.\n",
"\n",
"And roughly, the 68040 is twice as fast at a given clock\n",
"speed as is the 68030.\n",
"\n",
"-- \n",
"Ray Fischer \"Convictions are more dangerous enemies of truth\n",
"ray@netcom.com than lies.\" -- Friedrich Nietzsche\n",
"\n",
"0.4778416465020907\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n",
"From: rvenkate@ux4.cso.uiuc.edu (Ravikuma Venkateswar)\n",
"Subject: Re: x86 ~= 680x0 ?? (How do they compare?)\n",
"Distribution: usa\n",
"Organization: University of Illinois at Urbana\n",
"Lines: 59\n",
"\n",
"ray@netcom.com (Ray Fischer) writes:\n",
"\n",
">dhk@ubbpc.uucp (Dave Kitabjian) writes ...\n",
">>I'm sure Intel and Motorola are competing neck-and-neck for \n",
">>crunch-power, but for a given clock speed, how do we rank the\n",
">>following (from 1st to 6th):\n",
">> 486\t\t68040\n",
">> 386\t\t68030\n",
">> 286\t\t68020\n",
"\n",
">040 486 030 386 020 286\n",
"\n",
"How about some numbers here? Some kind of benchmark?\n",
"If you want, let me start it - 486DX2-66 - 32 SPECint92, 16 SPECfp92 .\n",
"\n",
">>While you're at it, where will the following fit into the list:\n",
">> 68060\n",
">> Pentium\n",
">> PowerPC\n",
"\n",
">060 fastest, then Pentium, with the first versions of the PowerPC\n",
">somewhere in the vicinity.\n",
"\n",
"Numbers? Pentium @66MHz - 65 SPECint92, 57 SPECfp92 .\n",
"\t PowerPC @66MHz - 50 SPECint92, 80 SPECfp92 . (Note this is the 601)\n",
" (Alpha @150MHz - 74 SPECint92,126 SPECfp92 - just for comparison)\n",
"\n",
">>And about clock speed: Does doubling the clock speed double the\n",
">>overall processor speed? And fill in the __'s below:\n",
">> 68030 @ __ MHz = 68040 @ __ MHz\n",
"\n",
">No. Computer speed is only partly dependent of processor/clock speed.\n",
">Memory system speed play a large role as does video system speed and\n",
">I/O speed. As processor clock rates go up, the speed of the memory\n",
">system becomes the greatest factor in the overall system speed. If\n",
">you have a 50MHz processor, it can be reading another word from memory\n",
">every 20ns. Sure, you can put all 20ns memory in your computer, but\n",
">it will cost 10 times as much as the slower 80ns SIMMs.\n",
"\n",
"Not in a clock-doubled system. There isn't a doubling in performance, but\n",
"it _is_ quite significant. Maybe about a 70% increase in performance.\n",
"\n",
"Besides, for 0 wait state performance, you'd need a cache anyway. I mean,\n",
"who uses a processor that runs at the speed of 80ns SIMMs? Note that this\n",
"memory speed corresponds to a clock speed of 12.5 MHz.\n",
"\n",
">And roughly, the 68040 is twice as fast at a given clock\n",
">speed as is the 68030.\n",
"\n",
"Numbers?\n",
"\n",
">-- \n",
">Ray Fischer \"Convictions are more dangerous enemies of truth\n",
">ray@netcom.com than lies.\" -- Friedrich Nietzsche\n",
"-- \n",
"Ravikumar Venkateswar\n",
"rvenkate@uiuc.edu\n",
"\n",
"A pun is a no' blessed form of whit.\n",
"\n",
"0.44292082969477664\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n",
"From: ray@netcom.com (Ray Fischer)\n",
"Subject: Re: x86 ~= 680x0 ?? (How do they compare?)\n",
"Organization: Netcom. San Jose, California\n",
"Distribution: usa\n",
"Lines: 30\n",
"\n",
"rvenkate@ux4.cso.uiuc.edu (Ravikuma Venkateswar) writes ...\n",
">ray@netcom.com (Ray Fischer) writes:\n",
">>040 486 030 386 020 286\n",
">\n",
">How about some numbers here? Some kind of benchmark?\n",
"\n",
"Benchmarks are for marketing dweebs and CPU envy. OK, if it will make\n",
"you happy, the 486 is faster than the 040. BFD. Both architectures\n",
"are nearing then end of their lifetimes. And especially with the x86\n",
"architecture: good riddance.\n",
"\n",
">Besides, for 0 wait state performance, you'd need a cache anyway. I mean,\n",
">who uses a processor that runs at the speed of 80ns SIMMs? Note that this\n",
">memory speed corresponds to a clock speed of 12.5 MHz.\n",
"\n",
"The point being the processor speed is only one of many aspects of a\n",
"computers performance. Clock speed, processor, memory speed, CPU\n",
"architecture, I/O systems, even the application program all contribute \n",
"to the overall system performance.\n",
"\n",
">>And roughly, the 68040 is twice as fast at a given clock\n",
">>speed as is the 68030.\n",
">\n",
">Numbers?\n",
"\n",
"Look them up yourself.\n",
"\n",
"-- \n",
"Ray Fischer \"Convictions are more dangerous enemies of truth\n",
"ray@netcom.com than lies.\" -- Friedrich Nietzsche\n",
"\n",
"0.3491800997095306\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n",
"From: mb4008@cehp11 (Morgan J Bullard)\n",
"Subject: Re: speeding up windows\n",
"Keywords: speed\n",
"Organization: University of Illinois at Urbana\n",
"Lines: 30\n",
"\n",
"djserian@flash.LakeheadU.Ca (Reincarnation of Elvis) writes:\n",
"\n",
">I have a 386/33 with 8 megs of memory\n",
"\n",
">I have noticed that lately when I use programs like WpfW or Corel Draw\n",
">my computer \"boggs\" down and becomes really sluggish!\n",
"\n",
">What can I do to increase performance? What should I turn on or off\n",
"\n",
">Will not loading wallpapers or stuff like that help when it comes to\n",
">the running speed of windows and the programs that run under it?\n",
"\n",
">Thanx in advance\n",
"\n",
">Derek\n",
"\n",
"1) make sure your hard drive is defragmented. This will speed up more than \n",
" just windows BTW. Use something like Norton's or PC Tools.\n",
"2) I _think_ that leaving the wall paper out will use less RAM and therefore\n",
" will speed up your machine but I could very will be wrong on this.\n",
"There's a good chance you've already done this but if not it may speed things\n",
"up. good luck\n",
"\t\t\t\tMorgan Bullard mb4008@coewl.cen.uiuc.edu\n",
"\t\t\t\t\t or mjbb@uxa.cso.uiuc.edu\n",
"\n",
">--\n",
">$_ /|$Derek J.P. Serianni $ E-Mail : djserian@flash.lakeheadu.ca $ \n",
">$\\'o.O' $Sociologist $ It's 106 miles to Chicago,we've got a full tank$\n",
">$=(___)=$Lakehead University $ of gas, half a pack of cigarettes,it's dark,and$\n",
">$ U $Thunder Bay, Ontario$ we're wearing sunglasses. -Elwood Blues $ \n",
"\n",
"0.26949927393886913\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n",
"----------------------------------------------------------------------------------------------------\n"
]
}
],
"outputs": [],
"source": [
"for i in range (1,5):\n",
" print(newsgroups[similarities.argsort()[0][-i]])\n",
@ -685,11 +493,14 @@
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -701,7 +512,10 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"subtitle": "3.tfidf (2)[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 4. <i>Wyszukiwarki</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -71,21 +85,17 @@
" * proszę zaznaczyć w MS TEAMS, że Państwo zrobili zadanie w assigments\n",
" * zdawanie zadania będzie na zajęciach. Proszę przygotować prezentację do 5 minut"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -96,8 +106,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
"version": "3.8.3"
},
"subtitle": "4.wyszukiwarki[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 5. <i>Ekstrakcja informacji z dokumentów</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -182,8 +196,8 @@
"- stworzyć regułowy ekstraktor informacji (np. na podstawie wyrażeń regularnych)\n",
"- wygenerować pliki `train/out.tsv`, `dev-0/out.tsv`, `test-A/out.tsv`\n",
"- dodać do commita w swoim forku powyższe pliki wraz z ze skryptem (skryptami), który pomógł je wygenerować. Skrypty powinny byc w formie tekstowej (jeżeli to jupyter to proszę przekonwertować do zwykłego pliku .py, np jupyter nbconvert --to script a.ipynb)\n",
"- wynik zaliczający zadanie to więcej niż 0.3 wg metryki F1 dla zbioru dev-0\n",
"- punkty za zadanie: 40, a dla 5 osób które osiągną najwyższy wyniki dostaną 60 punktów zamiast 40\n",
"- wynik zaliczający zadanie to więcej niż 0.1 wg metryki F1 dla zbioru test-A\n",
"- punkty za zadanie: 40, a dla 5 osób które osiągną najwyższy wyniki dostaną 70 punktów zamiast 40\n",
"- zadanie oddajemy do 27 kwietnia w MS TEAMS podając link do repozytorium. Proszę albo nadać użytkownikowi kubapok uprawnienia do przeglądania repozytorium, albo zrobić je publiczne"
]
},
@ -213,11 +227,14 @@
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -229,7 +246,10 @@
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"subtitle": "5.ekEtrakcja informacji z dokumentCCow[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

892
cw/06_klasyfikacja.ipynb Normal file
View File

@ -0,0 +1,892 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 6. <i>Klasyfikacja</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Zajęcia klasyfikacja"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zbiór kleister"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pathlib\n",
"from collections import Counter\n",
"from sklearn.metrics import *"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"KLEISTER_PATH = pathlib.Path('/home/kuba/Syncthing/przedmioty/2020-02/IE/applica/kleister-nda')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Pytanie\n",
"\n",
"Czy jurysdykcja musi być zapisana explicite w umowie?"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def get_expected_jurisdiction(filepath):\n",
" dataset_expected_jurisdiction = []\n",
" with open(filepath,'r') as train_expected_file:\n",
" for line in train_expected_file:\n",
" key_values = line.rstrip('\\n').split(' ')\n",
" jurisdiction = None\n",
" for key_value in key_values:\n",
" key, value = key_value.split('=')\n",
" if key == 'jurisdiction':\n",
" jurisdiction = value\n",
" if jurisdiction is None:\n",
" jurisdiction = 'NONE'\n",
" dataset_expected_jurisdiction.append(jurisdiction)\n",
" return dataset_expected_jurisdiction"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"train_expected_jurisdiction = get_expected_jurisdiction(KLEISTER_PATH/'train'/'expected.tsv')"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"dev_expected_jurisdiction = get_expected_jurisdiction(KLEISTER_PATH/'dev-0'/'expected.tsv')"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"254"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(train_expected_jurisdiction)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"False"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"'NONE' in train_expected_jurisdiction"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"31"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(set(train_expected_jurisdiction))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Czy wszystkie stany muszą występować w zbiorze trenującym w zbiorze kleister?\n",
"\n",
"https://en.wikipedia.org/wiki/U.S._state\n",
"\n",
"### Jaki jest baseline?"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"train_counter = Counter(train_expected_jurisdiction)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[('New_York', 43),\n",
" ('Delaware', 39),\n",
" ('California', 32),\n",
" ('Massachusetts', 15),\n",
" ('Texas', 13),\n",
" ('Illinois', 10),\n",
" ('Oregon', 9),\n",
" ('Florida', 9),\n",
" ('Pennsylvania', 9),\n",
" ('Missouri', 9),\n",
" ('Ohio', 8),\n",
" ('New_Jersey', 7),\n",
" ('Georgia', 6),\n",
" ('Indiana', 5),\n",
" ('Nevada', 5),\n",
" ('Colorado', 4),\n",
" ('Virginia', 4),\n",
" ('Washington', 4),\n",
" ('Michigan', 3),\n",
" ('Minnesota', 3),\n",
" ('Connecticut', 2),\n",
" ('Wisconsin', 2),\n",
" ('Maine', 2),\n",
" ('North_Carolina', 2),\n",
" ('Kansas', 2),\n",
" ('Utah', 2),\n",
" ('Iowa', 1),\n",
" ('Idaho', 1),\n",
" ('South_Dakota', 1),\n",
" ('South_Carolina', 1),\n",
" ('Rhode_Island', 1)]"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_counter.most_common(100)"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"most_common_answer = train_counter.most_common(100)[0][0]"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'New_York'"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"most_common_answer"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"dev_predictions_jurisdiction = [most_common_answer] * len(dev_expected_jurisdiction)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"dev_expected_jurisdiction"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"accuracy: 0.14457831325301204\n"
]
}
],
"source": [
"counter = 0 \n",
"for pred, exp in zip(dev_predictions_jurisdiction, dev_expected_jurisdiction):\n",
" if pred == exp:\n",
" counter +=1\n",
"print('accuracy: ', counter/len(dev_predictions_jurisdiction))"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0.14457831325301204"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"accuracy_score(dev_predictions_jurisdiction, dev_expected_jurisdiction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Co jeżeli nazwy klas nie występują explicite w zbiorach?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n",
" \n",
"https://git.wmi.amu.edu.pl/kubapok/sport-text-classification-ball-ISI-public"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"SPORT_PATH='/home/kuba/Syncthing/przedmioty/2020-02/ISI/zajecia6_klasyfikacja/repos/sport-text-classification-ball'\n",
"\n",
"SPORT_TRAIN=$SPORT_PATH/train/train.tsv.gz\n",
" \n",
"SPORT_DEV_EXP=$SPORT_PATH/dev-0/expected.tsv"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### jaki jest baseline dla sport classification ball?\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"zcat $SPORT_TRAIN | awk '{print $1}' | wc -l"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"zcat $SPORT_TRAIN | awk '{print $1}' | grep 1 | wc -l"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"cat $SPORT_DEV_EXP | wc -l\n",
"\n",
"grep 1 $SPORT_DEV_EXP | wc -l"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Sprytne podejście do klasyfikacji tekstu? Naiwny bayess"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/kuba/anaconda3/lib/python3.8/site-packages/gensim/similarities/__init__.py:15: UserWarning: The gensim.similarities.levenshtein submodule is disabled, because the optional Levenshtein package <https://pypi.org/project/python-Levenshtein/> is unavailable. Install Levenhstein (e.g. `pip install python-Levenshtein`) to suppress this warning.\n",
" warnings.warn(msg)\n"
]
}
],
"source": [
"from sklearn.datasets import fetch_20newsgroups\n",
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"import numpy as np\n",
"import sklearn.metrics\n",
"import gensim"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"newsgroups = fetch_20newsgroups()"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_text = newsgroups['data']"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_text_tokenized = [list(set(gensim.utils.tokenize(x, lowercase = True))) for x in newsgroups_text]"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"From: lerxst@wam.umd.edu (where's my thing)\n",
"Subject: WHAT car is this!?\n",
"Nntp-Posting-Host: rac3.wam.umd.edu\n",
"Organization: University of Maryland, College Park\n",
"Lines: 15\n",
"\n",
" I was wondering if anyone out there could enlighten me on this car I saw\n",
"the other day. It was a 2-door sports car, looked to be from the late 60s/\n",
"early 70s. It was called a Bricklin. The doors were really small. In addition,\n",
"the front bumper was separate from the rest of the body. This is \n",
"all I know. If anyone can tellme a model name, engine specs, years\n",
"of production, where this car is made, history, or whatever info you\n",
"have on this funky looking car, please e-mail.\n",
"\n",
"Thanks,\n",
"- IL\n",
" ---- brought to you by your neighborhood Lerxst ----\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
}
],
"source": [
"print(newsgroups_text[0])"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['where', 'name', 'looked', 'to', 'have', 'out', 'on', 'by', 'park', 'what', 'from', 'host', 'doors', 'day', 'be', 'organization', 'e', 'front', 'in', 'it', 'history', 'brought', 'know', 'addition', 'il', 'of', 'lines', 'i', 'your', 'bumper', 'there', 'please', 'me', 'separate', 'is', 'tellme', 'can', 'could', 'called', 'specs', 'college', 'this', 'thanks', 'looking', 'if', 'production', 'sports', 'lerxst', 'whatever', 'anyone', 'enlighten', 'saw', 'all', 'small', 'you', 'wam', 'mail', 'rest', 's', 'late', 'rac', 'funky', 'edu', 'info', 'the', 'wondering', 'years', 'door', 'posting', 'car', 'made', 'or', 'maryland', 'subject', 'bricklin', 'was', 'model', 'thing', 'university', 'engine', 'nntp', 'other', 'really', 'neighborhood', 'early', 'a', 'umd', 'my', 'body', 'were']\n"
]
}
],
"source": [
"print(newsgroups_text_tokenized[0])"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"Y = newsgroups['target']"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"array([7, 4, 4, ..., 3, 1, 8])"
]
},
"execution_count": 24,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Y"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"Y_names = newsgroups['target_names']"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['alt.atheism',\n",
" 'comp.graphics',\n",
" 'comp.os.ms-windows.misc',\n",
" 'comp.sys.ibm.pc.hardware',\n",
" 'comp.sys.mac.hardware',\n",
" 'comp.windows.x',\n",
" 'misc.forsale',\n",
" 'rec.autos',\n",
" 'rec.motorcycles',\n",
" 'rec.sport.baseball',\n",
" 'rec.sport.hockey',\n",
" 'sci.crypt',\n",
" 'sci.electronics',\n",
" 'sci.med',\n",
" 'sci.space',\n",
" 'soc.religion.christian',\n",
" 'talk.politics.guns',\n",
" 'talk.politics.mideast',\n",
" 'talk.politics.misc',\n",
" 'talk.religion.misc']"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Y_names"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"'talk.politics.guns'"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"Y_names[16]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$P('talk.politics.guns' | 'gun')= ?$ \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"$P(A|B) * P(A) = P(B) * P(B|A)$\n",
"\n",
"$P(A|B) = \\frac{P(B) * P(B|A)}{P(A)}$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$P('talk.politics.guns' | 'gun') * P('gun') = P('gun'|'talk.politics.guns') * P('talk.politics.guns')$\n",
"\n",
"\n",
"$P('talk.politics.guns' | 'gun') = \\frac{P('gun'|'talk.politics.guns') * P('talk.politics.guns')}{P('gun')}$\n",
"\n",
"\n",
"$p1 = P('gun'|'talk.politics.guns')$\n",
"\n",
"\n",
"$p2 = P('talk.politics.guns')$\n",
"\n",
"\n",
"$p3 = P('gun')$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## obliczanie $p1 = P('gun'|'talk.politics.guns')$"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"# samodzielne wykonanie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## obliczanie $p2 = P('talk.politics.guns')$\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"# samodzielne wykonanie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## obliczanie $p3 = P('gun')$"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"# samodzielne wykonanie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ostatecznie"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'p1' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-31-447f586cc09f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;34m(\u001b[0m\u001b[0mp1\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mp2\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m/\u001b[0m \u001b[0mp3\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'p1' is not defined"
]
}
],
"source": [
"(p1 * p2) / p3"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [],
"source": [
"def get_prob(index ):\n",
" talks_topic = [x for x,y in zip(newsgroups_text_tokenized,Y) if y == index]\n",
"\n",
" len([x for x in talks_topic if 'gun' in x])\n",
"\n",
" if len(talks_topic) == 0:\n",
" return 0.0\n",
" p1 = len([x for x in talks_topic if 'gun' in x]) / len(talks_topic)\n",
" p2 = len(talks_topic) / len(Y)\n",
" p3 = len([x for x in newsgroups_text_tokenized if 'gun' in x]) / len(Y)\n",
"\n",
" if p3 == 0:\n",
" return 0.0\n",
" else: \n",
" return (p1 * p2)/ p3\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"0.01622 \t\t alt.atheism\n",
"0.00000 \t\t comp.graphics\n",
"0.00541 \t\t comp.os.ms-windows.misc\n",
"0.01892 \t\t comp.sys.ibm.pc.hardware\n",
"0.00270 \t\t comp.sys.mac.hardware\n",
"0.00000 \t\t comp.windows.x\n",
"0.01351 \t\t misc.forsale\n",
"0.04054 \t\t rec.autos\n",
"0.01892 \t\t rec.motorcycles\n",
"0.00270 \t\t rec.sport.baseball\n",
"0.00541 \t\t rec.sport.hockey\n",
"0.03784 \t\t sci.crypt\n",
"0.02973 \t\t sci.electronics\n",
"0.00541 \t\t sci.med\n",
"0.01622 \t\t sci.space\n",
"0.00270 \t\t soc.religion.christian\n",
"0.68378 \t\t talk.politics.guns\n",
"0.04595 \t\t talk.politics.mideast\n",
"0.03784 \t\t talk.politics.misc\n",
"0.01622 \t\t talk.religion.misc\n",
"1.00000 \t\tsuma\n"
]
}
],
"source": [
"probs = []\n",
"for i in range(len(Y_names)):\n",
" probs.append(get_prob(i))\n",
" print(\"%.5f\" % get_prob(i),'\\t\\t', Y_names[i])\n",
" \n",
"print(\"%.5f\" % sum(probs), '\\t\\tsuma',)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### zadanie samodzielne"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [],
"source": [
"def get_prob2(index, word ):\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [],
"source": [
"# listing dla get_prob2, słowo 'god'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## założenie naiwnego bayesa"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"$P(class | word1, word2, word3) = \\frac{P(word1, word2, word3|class) * P(class)}{P(word1, word2, word3)}$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**przy założeniu o niezależności zmiennych losowych $word1$, $word2$, $word3$**:\n",
"\n",
"\n",
"$P(word1, word2, word3|class) = P(word1|class)* P(word2|class) * P(word3|class)$"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**ostatecznie:**\n",
"\n",
"\n",
"$P(class | word1, word2, word3) = \\frac{P(word1|class)* P(word2|class) * P(word3|class) * P(class)}{\\sum_k{P(word1|class_k)* P(word2|class_k) * P(word3|class_k) * P(class_k)}}$\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## zadania domowe naiwny bayes1 ręcznie"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- analogicznie zaimplementować funkcję get_prob3(index, document_tokenized), argument document_tokenized ma być zbiorem słów dokumentu. funkcja ma być naiwnym klasyfikatorem bayesowskim (w przypadku wielu słów)\n",
"- odpalić powyższy listing prawdopodobieństw z funkcją get_prob3 dla dokumentów: {'i','love','guns'} oraz {'is','there','life','after'\n",
",'death'}\n",
"- zadanie proszę zrobić w jupyterze, wygenerować pdf (kod + wyniki odpalenia) i umieścić go jako zadanie w teams\n",
"- termin 12.05, punktów: 40\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"## zadania domowe naiwny bayes2 gotowa biblioteka"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- wybrać jedno z poniższych repozytoriów i je sforkować:\n",
" - https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n",
" - https://git.wmi.amu.edu.pl/kubapok/sport-text-classification-ball-ISI-public\n",
"- stworzyć klasyfikator bazujący na naiwnym bayessie (może być gotowa biblioteka), może też korzystać z gotowych implementacji tfidf\n",
"- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 12.05, 40 punktów\n"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "6.Klasyfikacja[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

File diff suppressed because it is too large Load Diff

1089
cw/07_regresja_liniowa.ipynb Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,850 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 9. <i>Sequence labeling</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Klasyfikacja wieloklasowa i sequence labelling"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import gensim\n",
"import torch\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from datasets import load_dataset\n",
"from torchtext.vocab import Vocab\n",
"from collections import Counter\n",
"\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Klasyfikacja"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Klasfikacja binarna- 2 klasy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CATEGORIES = ['soc.religion.christian', 'alt.atheism']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups = fetch_20newsgroups(categories=CATEGORIES)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X = newsgroups['data']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y = newsgroups['target']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_names = newsgroups['target_names']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"X[0:1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"Y_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"del CATEGORIES, newsgroups, X, Y, Y_names"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### klasyfikacja wieloklasowa"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_dev = fetch_20newsgroups(subset = 'train')\n",
"newsgroups_test = fetch_20newsgroups(subset = 'test')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_dev_text = newsgroups_train_dev['data']\n",
"newsgroups_test_text = newsgroups_test['data']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_train_dev = newsgroups_train_dev['target']\n",
"Y_test = newsgroups_test['target']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_names = newsgroups_train_dev['target_names']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_train_dev"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_names"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Jaki baseline?**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"pd.value_counts(Y_train)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(Y_test, np.ones_like(Y_test) * 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"**Pytanie** - w jaki sposób stworzyć taki klasyfikator na podstawie tylko wiedzy z poprzednich ćwiczeń?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Zadanie - stworzyć klasyfikator regresji logistycznej one vs rest na podstawie tfdif. TFIDF powinien mieć słownik o wielkości 10000\n",
"\n",
"https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html\n",
"https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html\n",
"https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.multiclass import OneVsRestClassifier\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.feature_extraction.text import TfidfVectorizer"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax na tfidif"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Zadanie** Na podstawie poprzednich zajęć stworzyć sieć w pytorch bez warstw ukrytych, z jedną warstwą *output* z funkcją softmax (bez trenowania i ewaluacji sieci)\n",
"\n",
"Użyć https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html?highlight=softmax"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class NeuralNetworkModel(torch.nn.Module):\n",
"\n",
" pass"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"OUTPUT_SIZE = len(Y_names)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nn_model = NeuralNetworkModel(FEAUTERES, OUTPUT_SIZE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nn_model(torch.Tensor(X_train[0:3].astype(np.float32).todense()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"BATCH_SIZE = 5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.NLLLoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.2)\n",
"#optimizer = torch.optim.Adam(nn_model.parameters())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_loss_acc(model, X_dataset, Y_dataset):\n",
" loss_score = 0\n",
" acc_score = 0\n",
" items_total = 0\n",
" model.eval()\n",
" for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n",
" X = X_dataset[i:i+BATCH_SIZE]\n",
" X = torch.tensor(X.astype(np.float32).todense())\n",
" Y = Y_dataset[i:i+BATCH_SIZE]\n",
" Y = torch.tensor(Y)\n",
" Y_predictions = model(X)\n",
" acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()\n",
" items_total += Y.shape[0] \n",
"\n",
" loss = criterion(Y_predictions, Y)\n",
"\n",
" loss_score += loss.item() * Y.shape[0] \n",
" return (loss_score / items_total), (acc_score / items_total)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"for epoch in range(5):\n",
" loss_score = 0\n",
" acc_score = 0\n",
" items_total = 0\n",
" nn_model.train()\n",
" for i in range(0, Y_train.shape[0], BATCH_SIZE):\n",
" X = X_train[i:i+BATCH_SIZE]\n",
" X = torch.tensor(X.astype(np.float32).todense())\n",
" Y = Y_train[i:i+BATCH_SIZE]\n",
"\n",
" Y = torch.tensor(Y)\n",
" Y_predictions = nn_model(X)\n",
" acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()\n",
" items_total += Y.shape[0] \n",
"\n",
" optimizer.zero_grad()\n",
" loss = criterion(Y_predictions, Y)\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
"\n",
" loss_score += loss.item() * Y.shape[0]\n",
"\n",
" \n",
" display(epoch)\n",
" display(get_loss_acc(nn_model, X_train, Y_train))\n",
" display(get_loss_acc(nn_model, X_dev, Y_dev))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_text"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax z embeddingami na przykładzie NER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# !pip install torchtext\n",
"# !pip install datasets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.aclweb.org/anthology/W03-0419.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"dataset = load_dataset(\"conll2003\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def build_vocab(dataset):\n",
" counter = Counter()\n",
" for document in dataset:\n",
" counter.update(document)\n",
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab = build_vocab(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset['train']['tokens']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(vocab.itos)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab['on']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def data_process(dt):\n",
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def labels_process(dt):\n",
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids = data_process(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_tokens_ids = data_process(dataset['test']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"train_labels = labels_process(dataset['train']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_labels = labels_process(dataset['test']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max([max(x) for x in dataset['train']['ner_tags'] ])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class NERModel(torch.nn.Module):\n",
"\n",
" def __init__(self,):\n",
" super(NERModel, self).__init__()\n",
" self.emb = torch.nn.Embedding(23627,200)\n",
" self.fc1 = torch.nn.Linear(600,9)\n",
" #self.softmax = torch.nn.Softmax(dim=0)\n",
" # nie trzeba, bo używamy https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html\n",
" # jako kryterium\n",
" \n",
"\n",
" def forward(self, x):\n",
" x = self.emb(x)\n",
" x = x.reshape(600) \n",
" x = self.fc1(x)\n",
" #x = self.softmax(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids[0][1:4]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ner_model = NERModel()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ner_model(train_tokens_ids[0][1:4])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.CrossEntropyLoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.Adam(ner_model.parameters())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(train_labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for epoch in range(2):\n",
" loss_score = 0\n",
" acc_score = 0\n",
" prec_score = 0\n",
" selected_items = 0\n",
" recall_score = 0\n",
" relevant_items = 0\n",
" items_total = 0\n",
" nn_model.train()\n",
" #for i in range(len(train_labels)):\n",
" for i in range(100):\n",
" for j in range(1, len(train_labels[i]) - 1):\n",
" \n",
" X = train_tokens_ids[i][j-1: j+2]\n",
" Y = train_labels[i][j: j+1]\n",
"\n",
" Y_predictions = ner_model(X)\n",
" \n",
" \n",
" acc_score += int(torch.argmax(Y_predictions) == Y)\n",
" \n",
" if torch.argmax(Y_predictions) != 0:\n",
" selected_items +=1\n",
" if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" prec_score += 1\n",
" \n",
" if Y.item() != 0:\n",
" relevant_items +=1\n",
" if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" recall_score += 1\n",
" \n",
" items_total += 1\n",
"\n",
" \n",
" optimizer.zero_grad()\n",
" loss = criterion(Y_predictions.unsqueeze(0), Y)\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
"\n",
" loss_score += loss.item() \n",
" \n",
" precision = prec_score / selected_items\n",
" recall = recall_score / relevant_items\n",
" f1_score = (2*precision * recall) / (precision + recall)\n",
" display('epoch: ', epoch)\n",
" display('loss: ', loss_score / items_total)\n",
" display('acc: ', acc_score / items_total)\n",
" display('prec: ', precision)\n",
" display('recall: : ', recall)\n",
" display('f1: ', f1_score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"loss_score = 0\n",
"acc_score = 0\n",
"prec_score = 0\n",
"selected_items = 0\n",
"recall_score = 0\n",
"relevant_items = 0\n",
"items_total = 0\n",
"nn_model.eval()\n",
"for i in range(100):\n",
"#for i in range(len(test_labels)):\n",
" for j in range(1, len(test_labels[i]) - 1):\n",
"\n",
" X = test_tokens_ids[i][j-1: j+2]\n",
" Y = test_labels[i][j: j+1]\n",
"\n",
" Y_predictions = ner_model(X)\n",
"\n",
"\n",
" acc_score += int(torch.argmax(Y_predictions) == Y)\n",
"\n",
" if torch.argmax(Y_predictions) != 0:\n",
" selected_items +=1\n",
" if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" prec_score += 1\n",
"\n",
" if Y.item() != 0:\n",
" relevant_items +=1\n",
" if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" recall_score += 1\n",
"\n",
" items_total += 1\n",
"\n",
"\n",
" loss = criterion(Y_predictions.unsqueeze(0), Y)\n",
"\n",
"\n",
"\n",
" loss_score += loss.item() \n",
"\n",
"precision = prec_score / selected_items\n",
"recall = recall_score / relevant_items\n",
"f1_score = (2*precision * recall) / (precision + recall)\n",
"display('loss: ', loss_score / items_total)\n",
"display('acc: ', acc_score / items_total)\n",
"display('prec: ', precision)\n",
"display('recall: : ', recall)\n",
"display('f1: ', f1_score)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie domowe\n",
"\n",
"- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n",
"- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze lub nie).\n",
"- klasyfikator powinien obejmować dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)\n",
"- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.60\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 08.06, 80 punktów\n"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "9.Sequence labeling[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,951 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 9. <i>Sequence labeling</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Klasyfikacja wieloklasowa i sequence labelling"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import gensim\n",
"import torch\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from datasets import load_dataset\n",
"from torchtext.vocab import Vocab\n",
"from collections import Counter\n",
"\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.metrics import accuracy_score"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Klasyfikacja"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Klasfikacja binarna- 2 klasy"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"CATEGORIES = ['soc.religion.christian', 'alt.atheism']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups = fetch_20newsgroups(categories=CATEGORIES)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X = newsgroups['data']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y = newsgroups['target']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_names = newsgroups['target_names']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"X[0:1]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"Y_names"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"del CATEGORIES, newsgroups, X, Y, Y_names"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### klasyfikacja wieloklasowa"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_dev = fetch_20newsgroups(subset = 'train')\n",
"newsgroups_test = fetch_20newsgroups(subset = 'test')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_dev_text = newsgroups_train_dev['data']\n",
"newsgroups_test_text = newsgroups_test['data']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_train_dev = newsgroups_train_dev['target']\n",
"Y_test = newsgroups_test['target']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_text, newsgroups_dev_text, Y_train, Y_dev = train_test_split(newsgroups_train_dev_text, Y_train_dev, random_state=42)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_names = newsgroups_train_dev['target_names']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_train_dev"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"Y_names"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Jaki baseline?**"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"pd.value_counts(Y_train)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(Y_test, np.ones_like(Y_test) * 10)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"\n",
"**Pytanie** - w jaki sposób stworzyć taki klasyfikator na podstawie tylko wiedzy z poprzednich ćwiczeń?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Zadanie - stworzyć klasyfikator regresji logistycznej one vs rest na podstawie tfdif. TFIDF powinien mieć słownik o wielkości 10000\n",
"\n",
"https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OneVsRestClassifier.html\n",
"https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html\n",
"https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.multiclass import OneVsRestClassifier\n",
"from sklearn.linear_model import LogisticRegression\n",
"from sklearn.feature_extraction.text import TfidfVectorizer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"FEAUTERES = 10_000"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vectorizer = TfidfVectorizer(max_features=FEAUTERES)\n",
"X_train = vectorizer.fit_transform(newsgroups_train_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_dev = vectorizer.transform(newsgroups_dev_text)\n",
"X_test = vectorizer.transform(newsgroups_test_text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"clf = OneVsRestClassifier(LogisticRegression()).fit(X_train, Y_train)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"clf.predict(X_train[0:1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"clf.predict_proba(X_train[0:1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"np.max(clf.predict_proba(X_train[0]))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(clf.predict(X_train), Y_train)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(clf.predict(X_dev), Y_dev)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"accuracy_score(clf.predict(X_test), Y_test)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax na tfidif"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Zadanie** Na podstawie poprzednich zajęć stworzyć sieć w pytorch bez warstw ukrytych, z jedną warstwą *output* z funkcją softmax (bez trenowania i ewaluacji sieci)\n",
"\n",
"Użyć https://pytorch.org/docs/stable/generated/torch.nn.Softmax.html?highlight=softmax"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X_train"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class NeuralNetworkModel(torch.nn.Module):\n",
"\n",
" def __init__(self,FEAUTERES, output_size):\n",
" super(NeuralNetworkModel, self).__init__()\n",
" self.fc1 = torch.nn.Linear(FEAUTERES,OUTPUT_SIZE)\n",
" self.softmax = torch.nn.Softmax(dim=0)\n",
" \n",
"\n",
" def forward(self, x):\n",
" x = self.fc1(x)\n",
" x = self.softmax(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"OUTPUT_SIZE = len(Y_names)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nn_model = NeuralNetworkModel(FEAUTERES, OUTPUT_SIZE)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"nn_model(torch.Tensor(X_train[0:3].astype(np.float32).todense()))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"BATCH_SIZE = 5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.NLLLoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.SGD(nn_model.parameters(), lr = 0.2)\n",
"#optimizer = torch.optim.Adam(nn_model.parameters())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_loss_acc(model, X_dataset, Y_dataset):\n",
" loss_score = 0\n",
" acc_score = 0\n",
" items_total = 0\n",
" model.eval()\n",
" for i in range(0, Y_dataset.shape[0], BATCH_SIZE):\n",
" X = X_dataset[i:i+BATCH_SIZE]\n",
" X = torch.tensor(X.astype(np.float32).todense())\n",
" Y = Y_dataset[i:i+BATCH_SIZE]\n",
" Y = torch.tensor(Y)\n",
" Y_predictions = model(X)\n",
" acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()\n",
" items_total += Y.shape[0] \n",
"\n",
" loss = criterion(Y_predictions, Y)\n",
"\n",
" loss_score += loss.item() * Y.shape[0] \n",
" return (loss_score / items_total), (acc_score / items_total)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"for epoch in range(5):\n",
" loss_score = 0\n",
" acc_score = 0\n",
" items_total = 0\n",
" nn_model.train()\n",
" for i in range(0, Y_train.shape[0], BATCH_SIZE):\n",
" X = X_train[i:i+BATCH_SIZE]\n",
" X = torch.tensor(X.astype(np.float32).todense())\n",
" Y = Y_train[i:i+BATCH_SIZE]\n",
"\n",
" Y = torch.tensor(Y)\n",
" Y_predictions = nn_model(X)\n",
" acc_score += torch.sum(torch.argmax(Y_predictions,dim=1) == Y).item()\n",
" items_total += Y.shape[0] \n",
"\n",
" optimizer.zero_grad()\n",
" loss = criterion(Y_predictions, Y)\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
"\n",
" loss_score += loss.item() * Y.shape[0]\n",
"\n",
" \n",
" display(epoch)\n",
" display(get_loss_acc(nn_model, X_train, Y_train))\n",
" display(get_loss_acc(nn_model, X_dev, Y_dev))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"X.shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"newsgroups_train_text"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax z embeddingami na przykładzie NER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"# !pip install torchtext\n",
"# !pip install datasets"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.aclweb.org/anthology/W03-0419.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"dataset = load_dataset(\"conll2003\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def build_vocab(dataset):\n",
" counter = Counter()\n",
" for document in dataset:\n",
" counter.update(document)\n",
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab = build_vocab(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset['train']['tokens']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(vocab.itos)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab['on']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def data_process(dt):\n",
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def labels_process(dt):\n",
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids = data_process(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_tokens_ids = data_process(dataset['test']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"train_labels = labels_process(dataset['train']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_labels = labels_process(dataset['test']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"max([max(x) for x in dataset['train']['ner_tags'] ])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class NERModel(torch.nn.Module):\n",
"\n",
" def __init__(self,):\n",
" super(NERModel, self).__init__()\n",
" self.emb = torch.nn.Embedding(23627,200)\n",
" self.fc1 = torch.nn.Linear(600,9)\n",
" #self.softmax = torch.nn.Softmax(dim=0)\n",
" # nie trzeba, bo używamy https://pytorch.org/docs/stable/generated/torch.nn.CrossEntropyLoss.html\n",
" # jako kryterium\n",
" \n",
"\n",
" def forward(self, x):\n",
" x = self.emb(x)\n",
" x = x.reshape(600) \n",
" x = self.fc1(x)\n",
" #x = self.softmax(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids[0][1:4]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ner_model = NERModel()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ner_model(train_tokens_ids[0][1:4])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.CrossEntropyLoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.Adam(ner_model.parameters())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(train_labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for epoch in range(2):\n",
" loss_score = 0\n",
" acc_score = 0\n",
" prec_score = 0\n",
" selected_items = 0\n",
" recall_score = 0\n",
" relevant_items = 0\n",
" items_total = 0\n",
" nn_model.train()\n",
" #for i in range(len(train_labels)):\n",
" for i in range(100):\n",
" for j in range(1, len(train_labels[i]) - 1):\n",
" \n",
" X = train_tokens_ids[i][j-1: j+2]\n",
" Y = train_labels[i][j: j+1]\n",
"\n",
" Y_predictions = ner_model(X)\n",
" \n",
" \n",
" acc_score += int(torch.argmax(Y_predictions) == Y)\n",
" \n",
" if torch.argmax(Y_predictions) != 0:\n",
" selected_items +=1\n",
" if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" prec_score += 1\n",
" \n",
" if Y.item() != 0:\n",
" relevant_items +=1\n",
" if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" recall_score += 1\n",
" \n",
" items_total += 1\n",
"\n",
" \n",
" optimizer.zero_grad()\n",
" loss = criterion(Y_predictions.unsqueeze(0), Y)\n",
" loss.backward()\n",
" optimizer.step()\n",
"\n",
"\n",
" loss_score += loss.item() \n",
" \n",
" precision = prec_score / selected_items\n",
" recall = recall_score / relevant_items\n",
" f1_score = (2*precision * recall) / (precision + recall)\n",
" display('epoch: ', epoch)\n",
" display('loss: ', loss_score / items_total)\n",
" display('acc: ', acc_score / items_total)\n",
" display('prec: ', precision)\n",
" display('recall: : ', recall)\n",
" display('f1: ', f1_score)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"loss_score = 0\n",
"acc_score = 0\n",
"prec_score = 0\n",
"selected_items = 0\n",
"recall_score = 0\n",
"relevant_items = 0\n",
"items_total = 0\n",
"nn_model.eval()\n",
"for i in range(100):\n",
"#for i in range(len(test_labels)):\n",
" for j in range(1, len(test_labels[i]) - 1):\n",
"\n",
" X = test_tokens_ids[i][j-1: j+2]\n",
" Y = test_labels[i][j: j+1]\n",
"\n",
" Y_predictions = ner_model(X)\n",
"\n",
"\n",
" acc_score += int(torch.argmax(Y_predictions) == Y)\n",
"\n",
" if torch.argmax(Y_predictions) != 0:\n",
" selected_items +=1\n",
" if torch.argmax(Y_predictions) != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" prec_score += 1\n",
"\n",
" if Y.item() != 0:\n",
" relevant_items +=1\n",
" if Y.item() != 0 and torch.argmax(Y_predictions) == Y.item():\n",
" recall_score += 1\n",
"\n",
" items_total += 1\n",
"\n",
"\n",
" loss = criterion(Y_predictions.unsqueeze(0), Y)\n",
"\n",
"\n",
"\n",
" loss_score += loss.item() \n",
"\n",
"precision = prec_score / selected_items\n",
"recall = recall_score / relevant_items\n",
"f1_score = (2*precision * recall) / (precision + recall)\n",
"display('loss: ', loss_score / items_total)\n",
"display('acc: ', acc_score / items_total)\n",
"display('prec: ', precision)\n",
"display('recall: : ', recall)\n",
"display('f1: ', f1_score)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie domowe\n",
"\n",
"- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n",
"- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu (można bazować na tym jupyterze lub nie).\n",
"- klasyfikator powinien obejmować dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)\n",
"- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.60\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 08.06, 80 punktów\n"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "9.Sequence labeling[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

447
cw/10_CRF.ipynb Normal file
View File

@ -0,0 +1,447 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 10. <i>CRF</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax z embeddingami na przykładzie NER"
]
},
{
"cell_type": "markdown",
"metadata": {
"scrolled": true
},
"source": [
"https://pytorch-crf.readthedocs.io/en/stable/"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.aclweb.org/anthology/W03-0419.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import gensim\n",
"import torch\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from datasets import load_dataset\n",
"from torchtext.vocab import Vocab\n",
"from collections import Counter\n",
"\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"from tqdm.notebook import tqdm\n",
"\n",
"import torch\n",
"from torchcrf import CRF"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"dataset = load_dataset(\"conll2003\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def build_vocab(dataset):\n",
" counter = Counter()\n",
" for document in dataset:\n",
" counter.update(document)\n",
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab = build_vocab(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(vocab.itos)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab['on']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def data_process(dt):\n",
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def labels_process(dt):\n",
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids = data_process(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_tokens_ids = data_process(dataset['test']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"validation_tokens_ids = data_process(dataset['validation']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"train_labels = labels_process(dataset['train']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"validation_labels = labels_process(dataset['validation']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_labels = labels_process(dataset['test']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_scores(y_true, y_pred):\n",
" acc_score = 0\n",
" tp = 0\n",
" fp = 0\n",
" selected_items = 0\n",
" relevant_items = 0 \n",
"\n",
" for p,t in zip(y_pred, y_true):\n",
" if p == t:\n",
" acc_score +=1\n",
"\n",
" if p > 0 and p == t:\n",
" tp +=1\n",
"\n",
" if p > 0:\n",
" selected_items += 1\n",
"\n",
" if t > 0 :\n",
" relevant_items +=1\n",
"\n",
" \n",
" \n",
" if selected_items == 0:\n",
" precision = 1.0\n",
" else:\n",
" precision = tp / selected_items\n",
" \n",
" \n",
" if relevant_items == 0:\n",
" recall = 1.0\n",
" else:\n",
" recall = tp / relevant_items\n",
" \n",
" \n",
" if precision + recall == 0.0 :\n",
" f1 = 0.0\n",
" else:\n",
" f1 = 2* precision * recall / (precision + recall)\n",
"\n",
" return precision, recall, f1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1 "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class FF(torch.nn.Module):\n",
"\n",
" def __init__(self,):\n",
" super(FF, self).__init__()\n",
" self.emb = torch.nn.Embedding(23627,200)\n",
" self.fc1 = torch.nn.Linear(200,num_tags)\n",
" \n",
"\n",
" def forward(self, x):\n",
" x = self.emb(x)\n",
" x = self.fc1(x)\n",
" return x"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ff = FF()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"crf = CRF(num_tags)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"params = list(ff.parameters()) + list(crf.parameters())\n",
"\n",
"optimizer = torch.optim.Adam(params)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def eval_model(dataset_tokens, dataset_labels):\n",
" Y_true = []\n",
" Y_pred = []\n",
" ff.eval()\n",
" crf.eval()\n",
" for i in tqdm(range(len(dataset_labels))):\n",
" batch_tokens = dataset_tokens[i]\n",
" tags = list(dataset_labels[i].numpy())\n",
" emissions = ff(batch_tokens).unsqueeze(1)\n",
" Y_pred += crf.decode(emissions)[0]\n",
" Y_true += tags\n",
"\n",
" return get_scores(Y_true, Y_pred)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NUM_EPOCHS = 4"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"for i in range(NUM_EPOCHS):\n",
" ff.train()\n",
" crf.train()\n",
" for i in tqdm(range(len(train_labels))):\n",
" batch_tokens = train_tokens_ids[i]\n",
" tags = train_labels[i].unsqueeze(1)\n",
" emissions = ff(batch_tokens).unsqueeze(1)\n",
"\n",
" optimizer.zero_grad()\n",
" loss = -crf(emissions,tags)\n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" ff.eval()\n",
" crf.eval()\n",
" print(eval_model(validation_tokens_ids, validation_labels))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eval_model(validation_tokens_ids, validation_labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eval_model(test_tokens_ids, test_labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(train_tokens_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie domowe\n",
"\n",
"- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n",
"- stworzyć klasyfikator bazujący na sieci neuronowej feed forward w pytorchu + CRF (można bazować na tym jupyterze lub nie).\n",
"- sieć feedforward powinna obejmować aktualne słowo, poprzednie i następne + dodatkowe cechy (np. długość wyrazu, czy wyraz zaczyna się od wielkiej litery, stemmming słowa, czy zawiera cyfrę)\n",
"- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 15.06, 60 punktów, za najlepszy wynik- 100 punktów\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "10.CRF[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

615
cw/11_NER_RNN.ipynb Normal file
View File

@ -0,0 +1,615 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 11. <i>NER RNN</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax z embeddingami na przykładzie NER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import gensim\n",
"import torch\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from datasets import load_dataset\n",
"from torchtext.vocab import Vocab\n",
"from collections import Counter\n",
"\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"from tqdm.notebook import tqdm\n",
"\n",
"import torch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"dataset = load_dataset(\"conll2003\")"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def build_vocab(dataset):\n",
" counter = Counter()\n",
" for document in dataset:\n",
" counter.update(document)\n",
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"vocab = build_vocab(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"23627"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(vocab.itos)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"15"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"vocab['on']"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def data_process(dt):\n",
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def labels_process(dt):\n",
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids = data_process(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"test_tokens_ids = data_process(dataset['test']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"validation_tokens_ids = data_process(dataset['validation']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"train_labels = labels_process(dataset['train']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [],
"source": [
"validation_labels = labels_process(dataset['validation']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"test_labels = labels_process(dataset['test']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([ 2, 966, 22409, 238, 773, 9, 4588, 212, 7686, 4,\n",
" 3])"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_tokens_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'chunk_tags': [11, 21, 11, 12, 21, 22, 11, 12, 0],\n",
" 'id': '0',\n",
" 'ner_tags': [3, 0, 7, 0, 0, 0, 7, 0, 0],\n",
" 'pos_tags': [22, 42, 16, 21, 35, 37, 16, 21, 7],\n",
" 'tokens': ['EU',\n",
" 'rejects',\n",
" 'German',\n",
" 'call',\n",
" 'to',\n",
" 'boycott',\n",
" 'British',\n",
" 'lamb',\n",
" '.']}"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"dataset['train'][0]"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"tensor([0, 3, 0, 7, 0, 0, 0, 7, 0, 0, 0])"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"train_labels[0]"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"def get_scores(y_true, y_pred):\n",
" acc_score = 0\n",
" tp = 0\n",
" fp = 0\n",
" selected_items = 0\n",
" relevant_items = 0 \n",
"\n",
" for p,t in zip(y_pred, y_true):\n",
" if p == t:\n",
" acc_score +=1\n",
"\n",
" if p > 0 and p == t:\n",
" tp +=1\n",
"\n",
" if p > 0:\n",
" selected_items += 1\n",
"\n",
" if t > 0 :\n",
" relevant_items +=1\n",
"\n",
" \n",
" \n",
" if selected_items == 0:\n",
" precision = 1.0\n",
" else:\n",
" precision = tp / selected_items\n",
" \n",
" \n",
" if relevant_items == 0:\n",
" recall = 1.0\n",
" else:\n",
" recall = tp / relevant_items\n",
" \n",
" \n",
" if precision + recall == 0.0 :\n",
" f1 = 0.0\n",
" else:\n",
" f1 = 2* precision * recall / (precision + recall)\n",
"\n",
" return precision, recall, f1"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1 "
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"class LSTM(torch.nn.Module):\n",
"\n",
" def __init__(self):\n",
" super(LSTM, self).__init__()\n",
" self.emb = torch.nn.Embedding(len(vocab.itos),100)\n",
" self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)\n",
" self.fc1 = torch.nn.Linear( 256 , 9)\n",
"\n",
" def forward(self, x):\n",
" emb = torch.relu(self.emb(x))\n",
" \n",
" lstm_output, (h_n, c_n) = self.rec(emb)\n",
" \n",
" out_weights = self.fc1(lstm_output)\n",
"\n",
" return out_weights"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"lstm = LSTM()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.CrossEntropyLoss()"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.Adam(lstm.parameters())"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def eval_model(dataset_tokens, dataset_labels, model):\n",
" Y_true = []\n",
" Y_pred = []\n",
" for i in tqdm(range(len(dataset_labels))):\n",
" batch_tokens = dataset_tokens[i].unsqueeze(0)\n",
" tags = list(dataset_labels[i].numpy())\n",
" Y_true += tags\n",
" \n",
" Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n",
" Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)\n",
" Y_pred += list(Y_batch_pred.numpy())\n",
" \n",
"\n",
" return get_scores(Y_true, Y_pred)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"NUM_EPOCHS = 5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"for i in range(NUM_EPOCHS):\n",
" lstm.train()\n",
" #for i in tqdm(range(500)):\n",
" for i in tqdm(range(len(train_labels))):\n",
" batch_tokens = train_tokens_ids[i].unsqueeze(0)\n",
" tags = train_labels[i].unsqueeze(1)\n",
" \n",
" \n",
" predicted_tags = lstm(batch_tokens)\n",
"\n",
" \n",
" optimizer.zero_grad()\n",
" loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))\n",
" \n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" lstm.eval()\n",
" print(eval_model(validation_tokens_ids, validation_labels, lstm))"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5159f7a61c3a439bab45573f15ea55b2",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=3250.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"(0.7963248522230789, 0.7203301174009067, 0.7564235581324383)"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eval_model(validation_tokens_ids, validation_labels, lstm)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "4b604bbb796f4d4cb99528fad98cfdff",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"HBox(children=(FloatProgress(value=0.0, max=3453.0), HTML(value='')))"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n"
]
},
{
"data": {
"text/plain": [
"(0.7450810185185185, 0.6348619329388561, 0.685569755058573)"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"eval_model(test_tokens_ids, test_labels, lstm)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/plain": [
"14041"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(train_tokens_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## pytania\n",
"\n",
"- co zrobić z trenowaniem na batchach > 1 ?\n",
"- co zrobić, żeby sieć uwzględniała następne tokeny, a nie tylko poprzednie?\n",
"- w jaki sposób wykorzystać taką sieć do zadania zwykłej klasyfikacji?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie na zajęcia ( 20 minut)\n",
"\n",
"zmodyfikować sieć tak, żeby była używała dwuwarstwowej, dwukierunkowej warstwy GRU oraz dropoutu. Dropout ma nałożony na embeddingi.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zadanie domowe\n",
"\n",
"\n",
"- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n",
"- stworzyć model seq labelling bazujący na sieci neuronowej opisanej w punkcie niżej (można bazować na tym jupyterze lub nie).\n",
"- model sieci to GRU (o dowolnych parametrach) + CRF w pytorchu korzystając z modułu CRF z poprzednich zajęć- - stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 22.06, 60 punktów, za najlepszy wynik- 100 punktów\n",
" "
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "11.NER RNN[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,565 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 11. <i>NER RNN</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście softmax z embeddingami na przykładzie NER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import gensim\n",
"import torch\n",
"import pandas as pd\n",
"import seaborn as sns\n",
"from sklearn.model_selection import train_test_split\n",
"\n",
"from datasets import load_dataset\n",
"from torchtext.vocab import Vocab\n",
"from collections import Counter\n",
"\n",
"from sklearn.datasets import fetch_20newsgroups\n",
"# https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html\n",
"\n",
"from sklearn.feature_extraction.text import TfidfVectorizer\n",
"from sklearn.metrics import accuracy_score\n",
"\n",
"from tqdm.notebook import tqdm\n",
"\n",
"import torch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"dataset = load_dataset(\"conll2003\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def build_vocab(dataset):\n",
" counter = Counter()\n",
" for document in dataset:\n",
" counter.update(document)\n",
" return Vocab(counter, specials=['<unk>', '<pad>', '<bos>', '<eos>'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab = build_vocab(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(vocab.itos)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"vocab['on']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def data_process(dt):\n",
" return [ torch.tensor([vocab['<bos>']] +[vocab[token] for token in document ] + [vocab['<eos>']], dtype = torch.long) for document in dt]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def labels_process(dt):\n",
" return [ torch.tensor([0] + document + [0], dtype = torch.long) for document in dt]\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids = data_process(dataset['train']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_tokens_ids = data_process(dataset['test']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"validation_tokens_ids = data_process(dataset['validation']['tokens'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"train_labels = labels_process(dataset['train']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"validation_labels = labels_process(dataset['validation']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_labels = labels_process(dataset['test']['ner_tags'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_tokens_ids[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset['train'][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"train_labels[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_scores(y_true, y_pred):\n",
" acc_score = 0\n",
" tp = 0\n",
" fp = 0\n",
" selected_items = 0\n",
" relevant_items = 0 \n",
"\n",
" for p,t in zip(y_pred, y_true):\n",
" if p == t:\n",
" acc_score +=1\n",
"\n",
" if p > 0 and p == t:\n",
" tp +=1\n",
"\n",
" if p > 0:\n",
" selected_items += 1\n",
"\n",
" if t > 0 :\n",
" relevant_items +=1\n",
"\n",
" \n",
" \n",
" if selected_items == 0:\n",
" precision = 1.0\n",
" else:\n",
" precision = tp / selected_items\n",
" \n",
" \n",
" if relevant_items == 0:\n",
" recall = 1.0\n",
" else:\n",
" recall = tp / relevant_items\n",
" \n",
" \n",
" if precision + recall == 0.0 :\n",
" f1 = 0.0\n",
" else:\n",
" f1 = 2* precision * recall / (precision + recall)\n",
"\n",
" return precision, recall, f1"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"num_tags = max([max(x) for x in dataset['train']['ner_tags'] ]) + 1 "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"class LSTM(torch.nn.Module):\n",
"\n",
" def __init__(self):\n",
" super(LSTM, self).__init__()\n",
" self.emb = torch.nn.Embedding(len(vocab.itos),100)\n",
" self.rec = torch.nn.LSTM(100, 256, 1, batch_first = True)\n",
" self.fc1 = torch.nn.Linear( 256 , 9)\n",
"\n",
" def forward(self, x):\n",
" emb = torch.relu(self.emb(x))\n",
" \n",
" lstm_output, (h_n, c_n) = self.rec(emb)\n",
" \n",
" out_weights = self.fc1(lstm_output)\n",
"\n",
" return out_weights"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"lstm = LSTM()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.CrossEntropyLoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.Adam(lstm.parameters())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def eval_model(dataset_tokens, dataset_labels, model):\n",
" Y_true = []\n",
" Y_pred = []\n",
" for i in tqdm(range(len(dataset_labels))):\n",
" batch_tokens = dataset_tokens[i].unsqueeze(0)\n",
" tags = list(dataset_labels[i].numpy())\n",
" Y_true += tags\n",
" \n",
" Y_batch_pred_weights = model(batch_tokens).squeeze(0)\n",
" Y_batch_pred = torch.argmax(Y_batch_pred_weights,1)\n",
" Y_pred += list(Y_batch_pred.numpy())\n",
" \n",
"\n",
" return get_scores(Y_true, Y_pred)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NUM_EPOCHS = 5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"for i in range(NUM_EPOCHS):\n",
" lstm.train()\n",
" #for i in tqdm(range(500)):\n",
" for i in tqdm(range(len(train_labels))):\n",
" batch_tokens = train_tokens_ids[i].unsqueeze(0)\n",
" tags = train_labels[i].unsqueeze(1)\n",
" \n",
" \n",
" predicted_tags = lstm(batch_tokens)\n",
"\n",
" \n",
" optimizer.zero_grad()\n",
" loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))\n",
" \n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" lstm.eval()\n",
" print(eval_model(validation_tokens_ids, validation_labels, lstm))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"eval_model(validation_tokens_ids, validation_labels, lstm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"eval_model(test_tokens_ids, test_labels, lstm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"len(train_tokens_ids)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## pytania\n",
"\n",
"- co zrobić z trenowaniem na batchach > 1 ?\n",
"- co zrobić, żeby sieć uwzględniała następne tokeny, a nie tylko poprzednie?\n",
"- w jaki sposób wykorzystać taką sieć do zadania zwykłej klasyfikacji?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Zadanie na zajęcia ( 20 minut)\n",
"\n",
"zmodyfikować sieć tak, żeby była używała dwuwarstwowej, dwukierunkowej warstwy GRU oraz dropoutu. Dropout ma nałożony na embeddingi.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"class GRU(torch.nn.Module):\n",
"\n",
" def __init__(self):\n",
" super(GRU, self).__init__()\n",
" self.emb = torch.nn.Embedding(len(vocab.itos),100)\n",
" self.dropout = torch.nn.Dropout(0.2)\n",
" self.rec = torch.nn.GRU(100, 256, 2, batch_first = True, bidirectional = True)\n",
" self.fc1 = torch.nn.Linear(2* 256 , 9)\n",
" \n",
" def forward(self, x):\n",
" emb = torch.relu(self.emb(x))\n",
" emb = self.dropout(emb)\n",
" \n",
" gru_output, h_n = self.rec(emb)\n",
" \n",
" out_weights = self.fc1(gru_output)\n",
"\n",
" return out_weights"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"gru = GRU()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"criterion = torch.nn.CrossEntropyLoss()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"optimizer = torch.optim.Adam(gru.parameters())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"NUM_EPOCHS = 5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"for i in range(NUM_EPOCHS):\n",
" gru.train()\n",
" #for i in tqdm(range(50)):\n",
" for i in tqdm(range(len(train_labels))):\n",
" batch_tokens = train_tokens_ids[i].unsqueeze(0)\n",
" tags = train_labels[i].unsqueeze(1)\n",
" \n",
" \n",
" predicted_tags = gru(batch_tokens)\n",
"\n",
" \n",
" optimizer.zero_grad()\n",
" loss = criterion(predicted_tags.squeeze(0),tags.squeeze(1))\n",
" \n",
" loss.backward()\n",
" optimizer.step()\n",
" \n",
" \n",
" gru.eval()\n",
" print(eval_model(validation_tokens_ids, validation_labels, gru))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zadanie domowe\n",
"\n",
"\n",
"- sklonować repozytorium https://git.wmi.amu.edu.pl/kubapok/en-ner-conll-2003\n",
"- stworzyć model seq labelling bazujący na sieci neuronowej opisanej w punkcie niżej (można bazować na tym jupyterze lub nie).\n",
"- model sieci to GRU (o dowolnych parametrach) + CRF w pytorchu korzystając z modułu CRF z poprzednich zajęć- - stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik fscore sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.65\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 22.06, 60 punktów, za najlepszy wynik- 100 punktów\n",
" "
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "11.NER RNN[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

690
cw/12_transformery.ipynb Normal file
View File

@ -0,0 +1,690 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 12. <i>Transformery</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# bpe"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"pip install tokenizers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://github.com/huggingface/tokenizers/tree/master/bindings/python"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tokenizers import Tokenizer, models, trainers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tokenizers.trainers import BpeTrainer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = Tokenizer(models.BPE())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trainer = trainers.BpeTrainer(vocab_size=20000, min_frequency=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://wolnelektury.pl/media/book/txt/pan-tadeusz.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.train(files = ['/home/kuba/Syncthing/przedmioty/2020-02/ISI/zajecia9_ngramowy_model_jDDezykowy/pan-tadeusz-train.txt'], trainer = trainer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = tokenizer.encode(\"Nie śpiewają piosenek: pracują leniwo,\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output.ids"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output.tokens"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.save(\"./my-bpe.tokenizer.json\", pretty=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ZADANIE\n",
"stworzyć BPE tokenizer na podstawie https://git.wmi.amu.edu.pl/kubapok/lalka-lm/src/branch/master/train/train.tsv\n",
"i stworzyć stokenizowaną listę: \n",
"https://git.wmi.amu.edu.pl/kubapok/lalka-lm/src/branch/master/test-A/in.tsv\n",
"\n",
"wybrać vocab_size = 8k, uwzględnić dodatkowe tokeny: BOS oraz EOS i wpleść je do zbioru testowego"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# transformery"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# pip install transformers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"przykłady pochodzą częściowo z: https://huggingface.co/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline, set_seed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import RobertaTokenizer, RobertaModel"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = RobertaTokenizer.from_pretrained('roberta-base')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = RobertaModel.from_pretrained('roberta-base')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"Replace me by any text you'd like. Bla Bla\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoded_input = tokenizer(text, return_tensors='pt')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoded_input['input_ids']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoded_input['input_ids']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.decode([162])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = model(**encoded_input)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://huggingface.co/transformers/main_classes/output.html#basemodeloutputwithpoolingandcrossattentionsM"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://arxiv.org/pdf/1907.11692.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[0].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"\n",
"output[1].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = model(**encoded_input, output_hidden_states=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output[2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"output[2][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][0].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][1].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][12].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = model(**encoded_input, output_attentions=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output[2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][0].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"output[2][2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## gotowe api"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### generowanie tekstu"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = pipeline('text-generation', model='gpt2')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(\"Hello, I'm a computer science student\", max_length=30, num_return_sequences=5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"model(\"I want to contribute to Google's Computer Vision Program, which is doing extensive work on big\", max_length=30, num_return_sequences=5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### sentiment analysis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"\n",
"model = pipeline(\"sentiment-analysis\", model='distilbert-base-uncased-finetuned-sst-2-english')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(\"I'm very happy. Today is the beatifull weather\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(\"It's raining. What a terrible day...\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## NER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = pipeline(\"sentiment-analysis\", model='distilbert-base-uncased-finetuned-sst-2-english')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"model = pipeline(\"ner\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"George Washington went to Washington\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### masked language modelling"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ZADANIE (10 minut)\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"przewidzieć <mask> token w \"The world <MASK> II started in 1939\"\" wg dowolnego anglojęzycznego modelu"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### text summarization"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"summarizer = pipeline(\"summarization\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ARTICLE = \"\"\" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York.\n",
"A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband.\n",
"Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared \"I do\" five more times, sometimes only within two weeks of each other.\n",
"In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her \"first and only\" marriage.\n",
"Barrientos, now 39, is facing two criminal counts of \"offering a false instrument for filing in the first degree,\" referring to her false statements on the\n",
"2010 marriage license application, according to court documents.\n",
"Prosecutors said the marriages were part of an immigration scam.\n",
"On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to her attorney, Christopher Wright, who declined to comment further.\n",
"After leaving court, Barrientos was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New York subway through an emergency exit, said Detective\n",
"Annette Markowski, a police spokeswoman. In total, Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.\n",
"All occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be married to four men, and at one time, she was married to eight men at once, prosecutors say.\n",
"Prosecutors said the immigration scam involved some of her husbands, who filed for permanent residence status shortly after the marriages.\n",
"Any divorces happened only after such filings were approved. It was unclear whether any of the men will be prosecuted.\n",
"The case was referred to the Bronx District Attorney\\'s Office by Immigration and Customs Enforcement and the Department of Homeland Security\\'s\n",
"Investigation Division. Seven of the men are from so-called \"red-flagged\" countries, including Egypt, Turkey, Georgia, Pakistan and Mali.\n",
"Her eighth husband, Rashid Rajput, was deported in 2006 to his native Pakistan after an investigation by the Joint Terrorism Task Force.\n",
"If convicted, Barrientos faces up to four years in prison. Her next court appearance is scheduled for May 18.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ZADANIE DOMOWE"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- sforkować repozytorium: https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n",
"- finetunować klasyfikator bazujący na jakieś pretrenowanej sieć typu transformer (np BERT, Roberta). Można użyć dowolnej biblioteki\n",
" (np hugging face, fairseq)\n",
"- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 22.06, 60 punktów\n"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "12.Transformery[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,802 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 12. <i>Transformery</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# bpe"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"pip install tokenizers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://github.com/huggingface/tokenizers/tree/master/bindings/python"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tokenizers import Tokenizer, models, trainers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from tokenizers.trainers import BpeTrainer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = Tokenizer(models.BPE())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trainer = trainers.BpeTrainer(vocab_size=20000, min_frequency=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://wolnelektury.pl/media/book/txt/pan-tadeusz.txt"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.train(files = ['/home/kuba/Syncthing/przedmioty/2020-02/ISI/zajecia9_ngramowy_model_jDDezykowy/pan-tadeusz-train.txt'], trainer = trainer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = tokenizer.encode(\"Nie śpiewają piosenek: pracują leniwo,\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output.ids"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output.tokens"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.save(\"./my-bpe.tokenizer.json\", pretty=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## ZADANIE\n",
"stworzyć BPE tokenizer na podstawie https://git.wmi.amu.edu.pl/kubapok/lalka-lm/src/branch/master/train/train.tsv\n",
"i stworzyć stokenizowaną listę: \n",
"https://git.wmi.amu.edu.pl/kubapok/lalka-lm/src/branch/master/test-A/in.tsv\n",
"\n",
"wybrać vocab_size = 8k, uwzględnić dodatkowe tokeny: BOS oraz EOS i wpleść je do zbioru testowego"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = Tokenizer(models.BPE())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"trainer = trainers.BpeTrainer(vocab_size=8000, special_tokens=[\"[BOS]\", \"[EOS]\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.train(files = ['/home/kuba/Syncthing/przedmioty/2020-02/ISI/zajecia12_transformers/lalka-lm/train/train_with_special_tokens'], trainer = trainer)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_path = '/home/kuba/Syncthing/przedmioty/2020-02/ISI/zajecia12_transformers/lalka-lm/train/train.tsv'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"with open(test_path, 'r') as test_in:\n",
" test_lines = ['[BOS] ' + x.rstrip('\\n') + ' [EOS]' for x in test_in.readlines()]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"test_lines"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenized = [tokenizer.encode(x) for x in test_lines]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenized"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"tokenized[0].tokens"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenized[0].tokens"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# transformery"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# pip install transformers"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"przykłady pochodzą częściowo z: https://huggingface.co/"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import torch"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline, set_seed"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import RobertaTokenizer, RobertaModel"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = RobertaTokenizer.from_pretrained('roberta-base')\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = RobertaModel.from_pretrained('roberta-base')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"Replace me by any text you'd like. Bla Bla\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoded_input = tokenizer(text, return_tensors='pt')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoded_input['input_ids']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoded_input['input_ids']"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.decode([162])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = model(**encoded_input)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"output"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://huggingface.co/transformers/main_classes/output.html#basemodeloutputwithpoolingandcrossattentionsM"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://arxiv.org/pdf/1907.11692.pdf"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[0].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"\n",
"output[1].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = model(**encoded_input, output_hidden_states=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output[2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"output[2][0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][0].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][1].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][12].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output = model(**encoded_input, output_attentions=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"len(output[2])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"output[2][0].shape"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"output[2][2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## gotowe api"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### generowanie tekstu"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = pipeline('text-generation', model='gpt2')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(\"Hello, I'm a computer science student\", max_length=30, num_return_sequences=5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"model(\"I want to contribute to Google's Computer Vision Program, which is doing extensive work on big\", max_length=30, num_return_sequences=5)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### sentiment analysis"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"\n",
"model = pipeline(\"sentiment-analysis\", model='distilbert-base-uncased-finetuned-sst-2-english')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(\"I'm very happy. Today is the beatifull weather\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(\"It's raining. What a terrible day...\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## NER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = pipeline(\"sentiment-analysis\", model='distilbert-base-uncased-finetuned-sst-2-english')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import pipeline\n",
"model = pipeline(\"ner\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"George Washington went to Washington\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(text)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### masked language modelling"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"### ZADANIE (10 minut)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"przewidziać <mask> token w \"The world <MASK> II started in 1939\"\" wg dowolnego anglojęzycznego modelu"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model = pipeline(\"fill-mask\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model(f\"The world {model.tokenizer.mask_token} II started in 1939\")\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### text summarization"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"summarizer = pipeline(\"summarization\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"ARTICLE = \"\"\" New York (CNN)When Liana Barrientos was 23 years old, she got married in Westchester County, New York.\n",
"A year later, she got married again in Westchester County, but to a different man and without divorcing her first husband.\n",
"Only 18 days after that marriage, she got hitched yet again. Then, Barrientos declared \"I do\" five more times, sometimes only within two weeks of each other.\n",
"In 2010, she married once more, this time in the Bronx. In an application for a marriage license, she stated it was her \"first and only\" marriage.\n",
"Barrientos, now 39, is facing two criminal counts of \"offering a false instrument for filing in the first degree,\" referring to her false statements on the\n",
"2010 marriage license application, according to court documents.\n",
"Prosecutors said the marriages were part of an immigration scam.\n",
"On Friday, she pleaded not guilty at State Supreme Court in the Bronx, according to her attorney, Christopher Wright, who declined to comment further.\n",
"After leaving court, Barrientos was arrested and charged with theft of service and criminal trespass for allegedly sneaking into the New York subway through an emergency exit, said Detective\n",
"Annette Markowski, a police spokeswoman. In total, Barrientos has been married 10 times, with nine of her marriages occurring between 1999 and 2002.\n",
"All occurred either in Westchester County, Long Island, New Jersey or the Bronx. She is believed to still be married to four men, and at one time, she was married to eight men at once, prosecutors say.\n",
"Prosecutors said the immigration scam involved some of her husbands, who filed for permanent residence status shortly after the marriages.\n",
"Any divorces happened only after such filings were approved. It was unclear whether any of the men will be prosecuted.\n",
"The case was referred to the Bronx District Attorney\\'s Office by Immigration and Customs Enforcement and the Department of Homeland Security\\'s\n",
"Investigation Division. Seven of the men are from so-called \"red-flagged\" countries, including Egypt, Turkey, Georgia, Pakistan and Mali.\n",
"Her eighth husband, Rashid Rajput, was deported in 2006 to his native Pakistan after an investigation by the Joint Terrorism Task Force.\n",
"If convicted, Barrientos faces up to four years in prison. Her next court appearance is scheduled for May 18.\n",
"\"\"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(summarizer(ARTICLE, max_length=130, min_length=30, do_sample=False))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ZADANIE DOMOWE"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"- sforkować repozytorium: https://git.wmi.amu.edu.pl/kubapok/paranormal-or-skeptic-ISI-public\n",
"- finetunować klasyfikator bazujący na jakieś pretrenowanej sieć typu transformer (np BERT, Roberta). Można użyć dowolnej biblioteki\n",
" (np hugging face, fairseq)\n",
"- stworzyć predykcje w plikach dev-0/out.tsv oraz test-A/out.tsv\n",
"- wynik accuracy sprawdzony za pomocą narzędzia geval (patrz poprzednie zadanie) powinien wynosić conajmniej 0.67\n",
"- proszę umieścić predykcję oraz skrypty generujące (w postaci tekstowej a nie jupyter) w repo, a w MS TEAMS umieścić link do swojego repo\n",
"termin 22.06, 60 punktów\n"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "12.Transformery[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

243
cw/13_transformery2.ipynb Normal file
View File

@ -0,0 +1,243 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 13. <i>Transformery 2</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wizualizacja atencji\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://github.com/jessevig/bertviz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!pip install bertviz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoModel\n",
"from bertviz import model_view, head_view"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEXT = \"This is a sample input sentence for a transformer model\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL = \"distilbert-base-uncased\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
"model = AutoModel.from_pretrained(MODEL, output_attentions=True)\n",
"inputs = tokenizer.encode(TEXT, return_tensors='pt')\n",
"outputs = model(inputs)\n",
"attention = outputs[-1]\n",
"tokens = tokenizer.convert_ids_to_tokens(inputs[0]) \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SELF ATTENTION MODELS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"head_view(attention, tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_view(attention, tokens)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ENCODER-DECODER MODELS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL = \"Helsinki-NLP/opus-mt-en-de\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEXT_ENCODER = \"She sees the small elephant.\"\n",
"TEXT_DECODER = \"Sie sieht den kleinen Elefanten.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
"model = AutoModel.from_pretrained(MODEL, output_attentions=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoder_input_ids = tokenizer(TEXT_ENCODER, return_tensors=\"pt\", add_special_tokens=True).input_ids\n",
"decoder_input_ids = tokenizer(TEXT_DECODER, return_tensors=\"pt\", add_special_tokens=True).input_ids\n",
"\n",
"outputs = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)\n",
"\n",
"encoder_text = tokenizer.convert_ids_to_tokens(encoder_input_ids[0])\n",
"decoder_text = tokenizer.convert_ids_to_tokens(decoder_input_ids[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"head_view(\n",
" encoder_attention=outputs.encoder_attentions,\n",
" decoder_attention=outputs.decoder_attentions,\n",
" cross_attention=outputs.cross_attentions,\n",
" encoder_tokens= encoder_text,\n",
" decoder_tokens = decoder_text\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"model_view(\n",
" encoder_attention=outputs.encoder_attentions,\n",
" decoder_attention=outputs.decoder_attentions,\n",
" cross_attention=outputs.cross_attentions,\n",
" encoder_tokens= encoder_text,\n",
" decoder_tokens = decoder_text\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zadanie (10 minut)\n",
"\n",
"Za pomocą modelu en-fr przetłumacz dowolne zdanie z angielskiego na język francuski i sprawdź wagi atencji dla tego tłumaczenia"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### PRZYKŁAD: GPT3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ZADANIE DOMOWE - POLEVAL"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "13.Transformery 2[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,336 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 13. <i>Transformery 2</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Wizualizacja atencji\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://github.com/jessevig/bertviz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!pip install bertviz"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoTokenizer, AutoModel\n",
"from bertviz import model_view, head_view"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEXT = \"This is a sample input sentence for a transformer model\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL = \"distilbert-base-uncased\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
"model = AutoModel.from_pretrained(MODEL, output_attentions=True)\n",
"inputs = tokenizer.encode(TEXT, return_tensors='pt')\n",
"outputs = model(inputs)\n",
"attention = outputs[-1]\n",
"tokens = tokenizer.convert_ids_to_tokens(inputs[0]) \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SELF ATTENTION MODELS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"head_view(attention, tokens)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model_view(attention, tokens)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ENCODER-DECODER MODELS"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL = \"Helsinki-NLP/opus-mt-en-de\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEXT_ENCODER = \"She sees the small elephant.\"\n",
"TEXT_DECODER = \"Sie sieht den kleinen Elefanten.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
"model = AutoModel.from_pretrained(MODEL, output_attentions=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoder_input_ids = tokenizer(TEXT_ENCODER, return_tensors=\"pt\", add_special_tokens=True).input_ids\n",
"decoder_input_ids = tokenizer(TEXT_DECODER, return_tensors=\"pt\", add_special_tokens=True).input_ids\n",
"\n",
"outputs = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)\n",
"\n",
"encoder_text = tokenizer.convert_ids_to_tokens(encoder_input_ids[0])\n",
"decoder_text = tokenizer.convert_ids_to_tokens(decoder_input_ids[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"head_view(\n",
" encoder_attention=outputs.encoder_attentions,\n",
" decoder_attention=outputs.decoder_attentions,\n",
" cross_attention=outputs.cross_attentions,\n",
" encoder_tokens= encoder_text,\n",
" decoder_tokens = decoder_text\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"model_view(\n",
" encoder_attention=outputs.encoder_attentions,\n",
" decoder_attention=outputs.decoder_attentions,\n",
" cross_attention=outputs.cross_attentions,\n",
" encoder_tokens= encoder_text,\n",
" decoder_tokens = decoder_text\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Zadanie (10 minut)\n",
"\n",
"Za pomocą modelu en-fr przetłumacz dowolne zdanie z angielskiego na język francuski i sprawdź wagi atencji dla tego tłumaczenia"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"MODEL = \"Helsinki-NLP/opus-mt-en-fr\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEXT_ENCODER = \"Although I still have fresh memories of my brother the elder Hamlets death, and though it was proper to mourn him throughout our kingdom, life still goes on—I think its wise to mourn him while also thinking about my own well being.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AutoModelWithLMHead, AutoTokenizer\n",
"\n",
"model = AutoModelWithLMHead.from_pretrained(MODEL)\n",
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
"\n",
"inputs = tokenizer.encode(TEXT_ENCODER, return_tensors=\"pt\")\n",
"outputs = model.generate(inputs, max_length=40, num_beams=4, early_stopping=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEXT_DECODER = tokenizer.decode(outputs[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"TEXT_DECODER"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer = AutoTokenizer.from_pretrained(MODEL)\n",
"model = AutoModel.from_pretrained(MODEL, output_attentions=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"encoder_input_ids = tokenizer(TEXT_ENCODER, return_tensors=\"pt\", add_special_tokens=True).input_ids\n",
"decoder_input_ids = tokenizer(TEXT_DECODER, return_tensors=\"pt\", add_special_tokens=True).input_ids\n",
"\n",
"outputs = model(input_ids=encoder_input_ids, decoder_input_ids=decoder_input_ids)\n",
"\n",
"encoder_text = tokenizer.convert_ids_to_tokens(encoder_input_ids[0])\n",
"decoder_text = tokenizer.convert_ids_to_tokens(decoder_input_ids[0])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"source": [
"head_view(\n",
" encoder_attention=outputs.encoder_attentions,\n",
" decoder_attention=outputs.decoder_attentions,\n",
" cross_attention=outputs.cross_attentions,\n",
" encoder_tokens= encoder_text,\n",
" decoder_tokens = decoder_text\n",
")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### PRZYKŁAD: GPT3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### ZADANIE DOMOWE - POLEVAL"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "13.Transformery 2[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,212 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 14. <i>Ekstrakcja informacji seq2seq</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### SIMILARITY SEARCH\n",
"1. zainstaluj faiss i zrób tutorial: https://github.com/facebookresearch/faiss\n",
"2. wczytaj treści artykułów z BBC News Train.csv\n",
"3. Użyj któregoś z transformerów (możesz użyć biblioteki sentence-transformers) do stworzenia embeddingów dokumentów\n",
"4. wczytaj embeddingi do bazy danych faiss\n",
"5. wyszukaj query 'consumer electronics market'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://www.kaggle.com/avishi/bbc-news-train-data"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import pickle\n",
"import numpy as np\n",
"import faiss\n",
"from sklearn.metrics import ndcg_score, dcg_score, average_precision_score"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"!pip install sentence-transformers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from sentence_transformers import SentenceTransformer\n",
"sentences = [\"Hello World\", \"Hallo Welt\"]\n",
"\n",
"model = SentenceTransformer('LaBSE')\n",
"embeddings = model.encode(sentences)\n",
"print(embeddings)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"r = pd.read_csv('BBC News Train.csv')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DOCUMENTS = list(r.Text)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = model.encode(DOCUMENTS)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"embeddings = model.encode(list(r.Text))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"QUERY_STR = 'consumer electronics market'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"query = model.encode([QUERY_STR])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"index = faiss.IndexFlatL2(embeddings.shape[1]) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"index.add(np.ascontiguousarray(embeddings))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"D, I = index.search(query, 5) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"I"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"D"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"DOCUMENTS[1363]"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "14.Ekstrakcja informacji seq2seq[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,369 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 15. <i>Similarity search</i> [ćwiczenia]</h2> \n",
"<h3> Jakub Pokrywka (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://arxiv.org/pdf/1910.10683.pdf"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"https://github.com/applicaai/kleister-nda"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import T5Tokenizer, T5ForConditionalGeneration"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"translate English to French: My name is Azeem and I live in India\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"text = \"summarize: Machine learning involves computers discovering how they can perform tasks without being explicitly programmed to do so. It involves computers learning from data provided so that they carry out certain tasks. For simple tasks assigned to computers, it is possible to program algorithms telling the machine how to execute all steps required to solve the problem at hand; on the computer's part, no learning is needed. For more advanced tasks, it can be challenging for a human to manually create the needed algorithms. In practice, it can turn out to be more effective to help the machine develop its own algorithm, rather than having human programmers specify every needed step.\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"from transformers import T5Tokenizer, T5ForConditionalGeneration\n",
"\n",
"tokenizer = T5Tokenizer.from_pretrained('t5-small')\n",
"\n",
"model = T5ForConditionalGeneration.from_pretrained('t5-small', return_dict=True,).to('cuda')\n",
"\n",
"\n",
"# You can also use \"translate English to French\" and \"translate English to Romanian\"\n",
"input_ids = tokenizer(text, return_tensors=\"pt\").input_ids.to('cuda') # Batch size 1\n",
"\n",
"outputs = model.generate(input_ids)\n",
"\n",
"decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
"print(decoded)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"KLEISTER_PATH = '/media/kuba/ssdsam/Syncthing/Syncthing/przedmioty/2020-02/IE/applica/kleister-nda/'"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_exp_f = open(KLEISTER_PATH + 'train/expected.tsv')\n",
"train_exp = []\n",
"for line in train_exp_f:\n",
" line_splitted = line.strip('\\n').split(' ')\n",
" found = False\n",
" for elem in line_splitted:\n",
" if 'jurisdiction=' in elem:\n",
" train_exp.append('jurisdiction: ' + elem.split('=')[1])\n",
" found = True\n",
" break\n",
" if not found:\n",
" train_exp.append('jurisdiction: NONE')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dev_exp_f = open(KLEISTER_PATH + 'dev-0/expected.tsv')\n",
"dev_exp = []\n",
"for line in dev_exp_f:\n",
" line_splitted = line.strip('\\n').split(' ')\n",
" found = False\n",
" for elem in line_splitted:\n",
" if 'jurisdiction=' in elem:\n",
" dev_exp.append('jurisdiction: ' + elem.split('=')[1])\n",
" found = True\n",
" break\n",
" if not found:\n",
" dev_exp.append('jurisdiction: NONE')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_exp"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_in_f = open(KLEISTER_PATH + 'train/in.tsv')\n",
"train_in = []\n",
"for line in train_in_f:\n",
" line = line.rstrip('\\n')\n",
" train_in.append(line)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dev_in_f = open(KLEISTER_PATH + 'dev-0/in.tsv')\n",
"dev_in = []\n",
"for line in dev_in_f:\n",
" line = line.rstrip('\\n')\n",
" dev_in.append(line)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"train_in[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.device"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input = train_in[0]\n",
"\n",
"# You can also use \"translate English to French\" and \"translate English to Romanian\"\n",
"input_ids = tokenizer(input, return_tensors=\"pt\").input_ids[:,:512].to('cuda') # Batch size 1\n",
"\n",
"outputs = model.generate(input_ids)\n",
"\n",
"decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
"print(decoded)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input_ids = tokenizer('translate English to German: The house is wonderful.', return_tensors='pt').input_ids.to('cuda')\n",
"labels = tokenizer('Das Haus ist wunderbar.', return_tensors='pt').input_ids.to('cuda')\n",
"# the forward function automatically creates the correct decoder_input_ids\n",
"loss = model(input_ids=input_ids, labels=labels).loss"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"loss"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from transformers import AdamW\n",
"\n",
"optimizer = AdamW(model.parameters(), lr=5e-5)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.train()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for line_in, line_exp in zip(train_in, train_exp):\n",
" input_ids = tokenizer(line_in, return_tensors='pt').input_ids[:,:512].to('cuda')\n",
" labels = tokenizer(line_exp, return_tensors='pt').input_ids.to('cuda')\n",
" # the forward function automatically creates the correct decoder_input_ids\n",
" loss = model(input_ids=input_ids, labels=labels).loss\n",
" loss.backward()\n",
" optimizer.step()\n",
" optimizer.zero_grad()\n",
" print(loss.item())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.eval()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input = dev_in[0]\n",
"\n",
"input_ids = tokenizer(input, return_tensors=\"pt\").input_ids[:,:512].to('cuda') # Batch size 1\n",
"\n",
"outputs = model.generate(input_ids)\n",
"\n",
"decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
"print(decoded)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
"source": [
"dev_exp[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"input = dev_in[2]\n",
"\n",
"input_ids = tokenizer(input, return_tensors=\"pt\").input_ids[:,:512].to('cuda') # Batch size 1\n",
"\n",
"outputs = model.generate(input_ids)\n",
"\n",
"decoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\n",
"\n",
"print(decoded)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dev_exp[2]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## pytanie:\n",
"- co można poprawić w istniejącym rozwiązaniu?"
]
}
],
"metadata": {
"author": "Jakub Pokrywka",
"email": "kubapok@wmi.amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
},
"subtitle": "15.Similarity search[ćwiczenia]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

1491
cw/BBC News Train.csv Normal file

File diff suppressed because one or more lines are too long

BIN
cw/obrazki/1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

266
cw/obrazki/1.svg Normal file
View File

@ -0,0 +1,266 @@
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<!-- Created with Inkscape (http://www.inkscape.org/) -->
<svg
xmlns:dc="http://purl.org/dc/elements/1.1/"
xmlns:cc="http://creativecommons.org/ns#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:svg="http://www.w3.org/2000/svg"
xmlns="http://www.w3.org/2000/svg"
xmlns:sodipodi="http://sodipodi.sourceforge.net/DTD/sodipodi-0.dtd"
xmlns:inkscape="http://www.inkscape.org/namespaces/inkscape"
width="800mm"
height="800mm"
viewBox="0 0 800 800"
version="1.1"
id="svg16"
sodipodi:docname="1.svg"
inkscape:export-filename="/home/kuba/Syncthing/przedmioty/2020-02/ISI/zajecia7_regresja_liniowa/obrazki/6.png"
inkscape:export-xdpi="96"
inkscape:export-ydpi="96"
inkscape:version="0.92.5 (2060ec1f9f, 2020-04-08)">
<defs
id="defs10" />
<sodipodi:namedview
id="base"
pagecolor="#ffffff"
bordercolor="#666666"
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
inkscape:zoom="0.35"
inkscape:cx="1485.1537"
inkscape:cy="1417.9979"
inkscape:document-units="mm"
inkscape:current-layer="layer1"
showgrid="false"
width="800mm"
inkscape:window-width="2560"
inkscape:window-height="1389"
inkscape:window-x="0"
inkscape:window-y="0"
inkscape:window-maximized="1">
<inkscape:grid
type="xygrid"
id="grid253" />
</sodipodi:namedview>
<metadata
id="metadata13">
<rdf:RDF>
<cc:Work
rdf:about="">
<dc:format>image/svg+xml</dc:format>
<dc:type
rdf:resource="http://purl.org/dc/dcmitype/StillImage" />
<dc:title></dc:title>
</cc:Work>
</rdf:RDF>
</metadata>
<g
inkscape:label="Layer 1"
inkscape:groupmode="layer"
id="layer1"
transform="translate(0,503)">
<rect
id="rect18"
width="700.24615"
height="11.759859"
x="62.006527"
y="148.39815"
style="stroke-width:0.26458332" />
<rect
id="rect18-3"
width="700.24615"
height="11.759859"
x="-475.47943"
y="-99.864838"
style="stroke-width:0.26458332"
transform="rotate(90.042959)" />
<circle
id="path37"
cx="138.44562"
cy="-13.583364"
r="11.22532"
style="stroke-width:0.26458332" />
<circle
id="path37-9"
cx="298.2728"
cy="-3.4271142"
r="11.22532"
style="stroke-width:0.26458332" />
<circle
id="path37-7"
cx="293.99649"
cy="-161.65015"
r="11.22532"
style="stroke-width:0.26458332" />
<circle
id="path37-92"
cx="349.58853"
cy="-91.091507"
r="11.22532"
style="stroke-width:0.26458332" />
<circle
id="path37-0"
cx="551.64429"
cy="-123.16381"
r="11.22532"
style="stroke-width:0.26458332" />
<circle
id="path37-2"
cx="505.67395"
cy="-385.08951"
r="11.22532"
style="stroke-width:0.26458332" />
<circle
id="path37-3"
cx="709.86786"
cy="-417.16187"
r="11.22532"
style="stroke-width:0.26458332" />
<circle
id="path37-75"
cx="450.08188"
cy="-214.03429"
r="11.22532"
style="stroke-width:0.26458332" />
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:42.33333333px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332;"
x="655.34485"
y="192.23036"
id="text215"><tspan
sodipodi:role="line"
id="tspan213"
x="655.34485"
y="192.23036"
style="stroke-width:0.26458332;font-size:42.33333333px;">x</tspan></text>
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:42.33333206px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="36.73391"
y="-383.11801"
id="text215-8"><tspan
sodipodi:role="line"
id="tspan213-9"
x="36.73391"
y="-345.66293"
style="font-size:42.33333206px;stroke-width:0.26458332" /></text>
<rect
style="fill:#000000;stroke-width:0.26458332"
id="rect263"
width="6.8035712"
height="38.55357"
x="-218.69528"
y="-431.2952"
transform="rotate(37.42867)" />
<rect
style="fill:#000000;stroke-width:0.26458332"
id="rect263-7"
width="6.8035712"
height="38.55357"
x="-386.60941"
y="255.82913"
transform="rotate(139.04298)"
inkscape:transform-center-x="-20.410714"
inkscape:transform-center-y="6.8035653" />
<rect
style="fill:#000000;stroke-width:0.26458332"
id="rect263-3"
width="6.8035712"
height="38.55357"
x="-371.74628"
y="-681.80341"
transform="rotate(129.61772)" />
<rect
style="fill:#000000;stroke-width:0.26458332"
id="rect263-7-6"
width="6.8035712"
height="38.55357"
x="-601.17584"
y="456.17935"
transform="rotate(-128.76797)"
inkscape:transform-center-x="7.5782166"
inkscape:transform-center-y="20.135944" />
<text
xml:space="preserve"
style="font-style:normal;font-weight:normal;font-size:42.33333206px;line-height:1.25;font-family:sans-serif;letter-spacing:0px;word-spacing:0px;fill:#000000;fill-opacity:1;stroke:none;stroke-width:0.26458332"
x="48.032505"
y="-377.82925"
id="text215-1"><tspan
sodipodi:role="line"
id="tspan213-2"
x="48.032505"
y="-377.82925"
style="font-size:42.33333206px;stroke-width:0.26458332">y</tspan><tspan
sodipodi:role="line"
x="48.032505"
y="-324.9126"
style="font-size:42.33333206px;stroke-width:0.26458332"
id="tspan334" /></text>
<rect
id="rect18-9"
width="670.43402"
height="13.544262"
x="114.69541"
y="-151.7952"
style="fill:#ff0000;stroke-width:0.27783805"
transform="matrix(0.99999973,7.380958e-4,0.11550968,0.99330635,0,0)" />
<rect
style="fill:#00ff00;stroke-width:0.26458332"
id="rect390"
width="5.2916665"
height="134.55952"
x="136.07143"
y="-146.74403" />
<rect
style="fill:#00ff00;stroke-width:0.26458332"
id="rect392"
width="5.2916665"
height="20.410715"
x="290.28571"
y="-164.13097" />
<rect
style="fill:#00ff00;stroke-width:0.26458332"
id="rect396"
width="6.0476379"
height="143.63097"
x="295.57736"
y="-143.72026" />
<rect
style="fill:#00ff00;stroke-width:0.26458332"
id="rect398"
width="4.5357141"
height="55.184521"
x="346.98215"
y="-143.72023" />
<rect
style="fill:#00ff00;stroke-width:0.26458332"
id="rect400"
width="5.2916665"
height="73.327377"
x="448.27979"
y="-215.53571" />
<rect
style="fill:#00ff00;stroke-width:0.26458332"
id="rect402"
width="3.7797618"
height="243.41666"
x="503.46429"
y="-386.38095" />
<rect
style="fill:#00ff00;stroke-width:0.22913587"
id="rect404"
width="4.5357146"
height="27.970238"
x="547.30951"
y="-145.9881" />
<rect
style="fill:#00ff00;stroke-width:0.26458332"
id="rect406"
width="4.5357141"
height="276.67856"
x="707.57141"
y="-419.64285" />
</g>
</svg>

After

Width:  |  Height:  |  Size: 7.6 KiB

BIN
cw/obrazki/10.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 129 KiB

BIN
cw/obrazki/2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 92 KiB

BIN
cw/obrazki/3.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 68 KiB

BIN
cw/obrazki/4.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 102 KiB

BIN
cw/obrazki/5.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 96 KiB

BIN
cw/obrazki/6.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 69 KiB

BIN
cw/obrazki/7.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

BIN
cw/obrazki/8.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 137 KiB

BIN
cw/obrazki/9.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 86 KiB

5
run_conversion.sh Normal file
View File

@ -0,0 +1,5 @@
for i in {cw,wyk}/*.ipynb;
do
bash convert_ipynb_to_md.sh $i
echo $i done
done

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 1. <i>Wyszukiwarki — wprowadzenie</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -8,16 +22,19 @@
"\n",
"## Systemy wyszukiwania informacji (information retrieval systems)\n",
"\n",
"![System wyszukiwania informacji](system-wyszukiwania-informacji.png)"
"![Schemat systemu wyszukiwania informacji](system-wyszukiwania-informacji.png)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"metadata": {
"jp-MarkdownHeadingCollapsed": true,
"tags": []
},
"source": [
"## Wyszukiwarki\n",
"\n",
"![Wyszukiwarki](wyszukiwarka-internetowa.png)"
"![Schemat wyszukiwarki internetowej](wyszukiwarka-internetowa.png)"
]
},
{
@ -89,7 +106,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Dostępne są też \"ekstrakty\" czystego tekstu - zob. http://data.statmt.org/ngrams/raw/, np. 59 GB czystego tekstu po polsku z 2012 roku."
"Dostępne są też „ekstrakty” czystego tekstu — zob. http://data.statmt.org/ngrams/raw/, np. 59 GB czystego tekstu po polsku z 2012 roku."
]
},
{
@ -284,7 +301,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Odpytywać \"pasożytniczo\" inną wyszukiwarkę"
"### Odpytywać „pasożytniczo” inną wyszukiwarkę"
]
},
{
@ -293,7 +310,7 @@
"metadata": {},
"outputs": [],
"source": [
"# see https://hackernoon.com/how-to-scrape-google-with-python-bo7d2tal\n",
"# zob. https://hackernoon.com/how-to-scrape-google-with-python-bo7d2tal\n",
"\n",
"import urllib\n",
"import requests\n",
@ -817,823 +834,7 @@
"User-agent: *\n",
"Disallow: /*/wyszukaj/\n",
"Disallow: /*servlet\n",
"Disallow: /reloadwww?\n",
"Disallow: /dfptools/adview/\n",
"Disallow: /pub/ips/*\n",
"Disallow: /ods?\n",
"Disallow: /getFile.servlet*\n",
"Disallow: /aliasy/blad.jsp\n",
"Disallow: /znajdz.do\n",
"Disallow: /portalSearch.do\n",
"Disallow: /im/ab/b4/10/z17515435Q.jpg\n",
"Disallow: /75224259/\n",
"\n",
"User-agent: Googlebot-News\n",
"Disallow: /nowy/\n",
"Disallow: /mapa_strony\n",
"Disallow: /*/wyszukaj/\n",
"Disallow: /*/51,\n",
"Disallow: /*/55,\n",
"Disallow: /*/2,\n",
"Disallow: /*order=\n",
"Disallow: /*obxx=\n",
"Disallow: /*tag=\n",
"Disallow: /reloadwww?\n",
"Disallow: /ods?\n",
"Disallow: /*servlet\n",
"Disallow: /dfptools/adview/\n",
"\n",
"User-agent: Yandex\n",
"Disallow: /\n",
"\n",
"User-Agent: bingbot\n",
"Disallow: /\n",
"\n",
"User-agent: 008\n",
"Disallow: /\n",
"\n",
"User-agent: 010\n",
"Disallow: /\n",
"\n",
"User-agent: 360Spider\n",
"Disallow: /\n",
"\n",
"User-agent: 80legs\n",
"Disallow: /\n",
"\n",
"User-agent: Aboundex\n",
"Disallow: /\n",
"\n",
"User-agent: accelobot\n",
"Disallow: /\n",
"\n",
"User-agent: Add\\ Catalog\n",
"Disallow: /\n",
"\n",
"User-agent: AhrefsBot\n",
"Disallow: /\n",
"\n",
"User-agent: aiHitBot\n",
"Disallow: /\n",
"\n",
"User-agent: Alexibot\n",
"Disallow: /\n",
"\n",
"User-agent: Aqua_Products\n",
"Disallow: /\n",
"\n",
"User-agent: AskJeeves\n",
"Disallow: /\n",
"\n",
"User-agent: asterias\n",
"Disallow: /\n",
"\n",
"User-agent: awcheckBot\n",
"Disallow: /\n",
"\n",
"User-agent: b2w/0.1\n",
"Disallow: /\n",
"\n",
"User-agent: BackDoorBot/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: BacklinkCrawler\n",
"Disallow: /\n",
"\n",
"User-agent: Baiduspider\n",
"Disallow: /\n",
"\n",
"User-agent: BecomeBot\n",
"Disallow: /\n",
"\n",
"User-agent: BLEXBot\n",
"Disallow: /\n",
"\n",
"User-agent: BlowFish/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: Bookmark search tool\n",
"Disallow: /\n",
"\n",
"User-agent: BotALot\n",
"Disallow: /\n",
"\n",
"User-agent: brandwatch.net\n",
"Disallow: /\n",
"\n",
"User-agent: BuiltBotTough\n",
"Disallow: /\n",
"\n",
"User-agent: Bullseye/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: BunnySlippers\n",
"Disallow: /\n",
"\n",
"User-agent: Butterfly\n",
"Disallow: /\n",
"\n",
"User-agent: CatchBot\n",
"Disallow: /\n",
"\n",
"User-agent: Charlotte\n",
"Disallow: /\n",
"\n",
"User-agent: CheeseBot\n",
"Disallow: /\n",
"\n",
"User-agent: CherryPicker\n",
"Disallow: /\n",
"\n",
"User-agent: CherryPickerElite/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: CherryPickerSE/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: CLIPish\n",
"Disallow: /\n",
"\n",
"User-agent: Cliqzbot\n",
"Disallow: /\n",
"\n",
"User-agent: COMODO\n",
"Disallow: /\n",
"\n",
"User-agent: Comodo-Certificates-Spider\n",
"Disallow: /\n",
"\n",
"User-agent: CompSpyBot\n",
"Disallow: /\n",
"\n",
"User-agent: Copernic\n",
"Disallow: /\n",
"\n",
"User-agent: CopyRightCheck\n",
"Disallow: /\n",
"\n",
"User-agent: cosmos\n",
"Disallow: /\n",
"\n",
"User-agent: crawler\n",
"Disallow: /\n",
"\n",
"User-agent: Crescent\n",
"Disallow: /\n",
"\n",
"User-agent: Crescent Internet ToolPak HTTP OLE Control v.1.0\n",
"Disallow: /\n",
"\n",
"User-agent: Curious\n",
"Disallow: /\n",
"\n",
"User-agent: curl\n",
"Disallow: /\n",
"\n",
"User-agent: dataprovider\\.com\n",
"Disallow: /\n",
"\n",
"User-agent: DinoPing\n",
"Disallow: /\n",
"\n",
"User-agent: discoverybot\n",
"Disallow: /\n",
"\n",
"User-agent: DittoSpyder\n",
"Disallow: /\n",
"\n",
"User-agent: DomainCrawler\n",
"Disallow: /\n",
"\n",
"User-agent: DomainCrawler\n",
"Disallow: /\n",
"\n",
"User-agent: dotbot\n",
"Disallow: /\n",
"\n",
"User-agent: dotnetdotcom\n",
"Disallow: /\n",
"\n",
"User-agent: Dow\\ Jones\\ Searchbot\n",
"Disallow: /\n",
"\n",
"User-agent: dumbot\n",
"Disallow: /\n",
"\n",
"User-agent: EasouSpider\n",
"Disallow: /\n",
"\n",
"User-agent: EmailCollector\n",
"Disallow: /\n",
"\n",
"User-agent: EmailSiphon\n",
"Disallow: /\n",
"\n",
"User-agent: EmailWolf\n",
"Disallow: /\n",
"\n",
"User-agent: Enterprise_Search\n",
"Disallow: /\n",
"\n",
"User-agent: Enterprise_Search/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: EroCrawler\n",
"Disallow: /\n",
"\n",
"User-agent: es\n",
"Disallow: /\n",
"\n",
"User-agent: Exabot\n",
"Disallow: /\n",
"\n",
"User-agent: ExtractorPro\n",
"Disallow: /\n",
"\n",
"User-agent: EzineArticlesLinkScanner\n",
"Disallow: /\n",
"\n",
"User-agent: Ezooms\n",
"Disallow: /\n",
"\n",
"User-agent: FairAd Client\n",
"Disallow: /\n",
"\n",
"User-agent: Flaming AttackBot\n",
"Disallow: /\n",
"\n",
"User-agent: Foobot\n",
"Disallow: /\n",
"\n",
"User-agent: FreeFind\n",
"Disallow: /\n",
"\n",
"User-agent: FTRF\\:\\ Friendly\n",
"Disallow: /\n",
"\n",
"User-agent: Gaisbot\n",
"Disallow: /\n",
"\n",
"User-agent: GetRight/4.2\n",
"Disallow: /\n",
"\n",
"User-agent: gigabot\n",
"Disallow: /\n",
"\n",
"User-agent: grub\n",
"Disallow: /\n",
"\n",
"User-agent: grub-client\n",
"Disallow: /\n",
"\n",
"User-agent: Harvest/1.5\n",
"Disallow: /\n",
"\n",
"User-agent: Hatena Antenna\n",
"Disallow: /\n",
"\n",
"User-agent: hloader\n",
"Disallow: /\n",
"\n",
"User-agent: http://www.SearchEngineWorld.com bot\n",
"Disallow: /\n",
"\n",
"User-agent: http://www.WebmasterWorld.com bot\n",
"Disallow: /\n",
"\n",
"User-agent: HTTP_Request\n",
"Disallow: /\n",
"\n",
"User-agent: HTTP_Request2\n",
"Disallow: /\n",
"\n",
"User-agent: httplib\n",
"Disallow: /\n",
"\n",
"User-agent: humanlinks\n",
"Disallow: /\n",
"\n",
"User-agent: ia_archiver\n",
"Disallow: /\n",
"\n",
"User-agent: ia_archiver\n",
"Disallow: /\n",
"\n",
"User-agent: ia_archiver/1.6\n",
"Disallow: /\n",
"\n",
"User-agent: Indy\\ Library\n",
"Disallow: /\n",
"\n",
"User-agent: InfoNaviRobot\n",
"Disallow: /\n",
"\n",
"User-agent: ip\\-web\\-crawler\\.com\n",
"Disallow: /\n",
"\n",
"User-agent: Iron33/1.0.2\n",
"Disallow: /\n",
"\n",
"User-agent: Jakarta\\ Commons-HttpClient\n",
"Disallow: /\n",
"\n",
"User-agent: Jeeves\n",
"Disallow: /\n",
"\n",
"User-agent: JennyBot\n",
"Disallow: /\n",
"\n",
"User-agent: Jetbot\n",
"Disallow: /\n",
"\n",
"User-agent: Jetbot/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: JikeSpider\n",
"Disallow: /\n",
"\n",
"User-agent: Kenjin Spider\n",
"Disallow: /\n",
"\n",
"User-agent: Keyword Density/0.9\n",
"Disallow: /\n",
"\n",
"User-agent: larbin\n",
"Disallow: /\n",
"\n",
"User-agent: LexiBot\n",
"Disallow: /\n",
"\n",
"User-agent: libWeb/clsHTTP\n",
"Disallow: /\n",
"\n",
"User-agent: libwww-perl\n",
"Disallow: /\n",
"\n",
"User-agent: lindex\\.com\n",
"Disallow: /\n",
"\n",
"User-agent: linkdex\\.com\n",
"Disallow: /\n",
"\n",
"User-agent: linkdexbot\n",
"Disallow: /\n",
"\n",
"User-agent: LinkextractorPro\n",
"Disallow: /\n",
"\n",
"User-agent: LinkScan/8.1a Unix\n",
"Disallow: /\n",
"\n",
"User-agent: LinkWalker\n",
"Disallow: /\n",
"\n",
"User-agent: lipperhey\n",
"Disallow: /\n",
"\n",
"User-agent: LNSpiderguy\n",
"Disallow: /\n",
"\n",
"User-agent: looksmart\n",
"Disallow: /\n",
"\n",
"User-agent: ltbot\n",
"Disallow: /\n",
"\n",
"User-agent: lwp-trivial\n",
"Disallow: /\n",
"\n",
"User-agent: lwp-trivial/1.34\n",
"Disallow: /\n",
"\n",
"User-agent: Lynx\n",
"Disallow: /\n",
"\n",
"User-agent: magpie\\-crawler\n",
"Disallow: /\n",
"\n",
"User-agent: Mata Hari\n",
"Disallow: /\n",
"\n",
"User-agent: Microsoft URL Control\n",
"Disallow: /\n",
"\n",
"User-agent: Microsoft URL Control - 5.01.4511\n",
"Disallow: /\n",
"\n",
"User-agent: Microsoft URL Control - 6.00.8169\n",
"Disallow: /\n",
"\n",
"User-agent: MIIxpc\n",
"Disallow: /\n",
"\n",
"User-agent: MIIxpc/4.2\n",
"Disallow: /\n",
"\n",
"User-agent: Mister PiX\n",
"Disallow: /\n",
"\n",
"User-agent: MJ12bot\n",
"Disallow: /\n",
"\n",
"User-agent: moget\n",
"Disallow: /\n",
"\n",
"User-agent: moget/2.1\n",
"Disallow: /\n",
"\n",
"User-agent: Mozilla/4.0 (compatible; BullsEye; Windows 95)\n",
"Disallow: /\n",
"\n",
"User-agent: MSIE\\ or\\ Firefox\\ mutant\n",
"Disallow: /\n",
"\n",
"User-agent: MSIECrawler\n",
"Disallow: /\n",
"\n",
"User-agent: naver\n",
"Disallow: /\n",
"\n",
"User-agent: NCBot\n",
"Disallow: /\n",
"\n",
"User-agent: NetAnts\n",
"Disallow: /\n",
"\n",
"User-agent: NetcraftSurveyAgent\n",
"Disallow: /\n",
"\n",
"User-agent: netEstate\\ NE\\ Crawler\n",
"Disallow: /\n",
"\n",
"User-agent: NetMechanic\n",
"Disallow: /\n",
"\n",
"User-agent: Netseer\n",
"Disallow: /\n",
"\n",
"User-agent: NextGenSearchBot\n",
"Disallow: /\n",
"\n",
"User-agent: NICErsPRO\n",
"Disallow: /\n",
"\n",
"User-agent: Nutch\n",
"Disallow: /\n",
"\n",
"User-agent: Nutch\n",
"Disallow: /\n",
"\n",
"User-agent: Ocelli\n",
"Disallow: /\n",
"\n",
"User-agent: Offline Explorer\n",
"Disallow: /\n",
"\n",
"User-agent: OmniExplorer_Bot\n",
"Disallow: /\n",
"\n",
"User-agent: Openbot\n",
"Disallow: /\n",
"\n",
"User-agent: Openfind\n",
"Disallow: /\n",
"\n",
"User-agent: Openfind\n",
"Disallow: /\n",
"\n",
"User-agent: Openfind data gathere\n",
"Disallow: /\n",
"\n",
"User-agent: OpenWebIndex\n",
"Disallow: /\n",
"\n",
"User-agent: Oracle Ultra Search\n",
"Disallow: /\n",
"\n",
"User-agent: PagesInventory\n",
"Disallow: /\n",
"\n",
"User-agent: PEAR\n",
"Disallow: /\n",
"\n",
"User-agent: PeoplePal\n",
"Disallow: /\n",
"\n",
"User-agent: PerMan\n",
"Disallow: /\n",
"\n",
"User-agent: ProCogSEOBot\n",
"Disallow: /\n",
"\n",
"User-agent: ProPowerBot/2.14\n",
"Disallow: /\n",
"\n",
"User-agent: ProWebWalker\n",
"Disallow: /\n",
"\n",
"User-agent: proximic\n",
"Disallow: /\n",
"\n",
"User-agent: psbot\n",
"Disallow: /\n",
"\n",
"User-agent: purebot\n",
"Disallow: /\n",
"\n",
"User-agent: QueryN Metasearch\n",
"Disallow: /\n",
"\n",
"User-agent: QuerySeekerSpider\n",
"Disallow: /\n",
"\n",
"User-agent: Radiation Retriever 1.1\n",
"Disallow: /\n",
"\n",
"User-agent: RepoMonkey\n",
"Disallow: /\n",
"\n",
"User-agent: RepoMonkey Bait & Tackle/v1.01\n",
"Disallow: /\n",
"\n",
"User-agent: Riddler\n",
"Disallow: /\n",
"\n",
"User-agent: RMA\n",
"Disallow: /\n",
"\n",
"User-agent: rojerbot\n",
"Disallow: /\n",
"\n",
"User-agent: RyteBot\n",
"Disallow: /\n",
"\n",
"User-agent: scooter\n",
"Disallow: /\n",
"\n",
"User-agent: ScoutJet\n",
"Disallow: /\n",
"\n",
"User-agent: Scrapy\n",
"Disallow: /\n",
"\n",
"User-agent: ScreenerBot\n",
"Disallow: /\n",
"\n",
"User-agent: searchmetrics\n",
"Disallow: /\n",
"\n",
"User-agent: searchpreview\n",
"Disallow: /\n",
"\n",
"User-agent: SemrushBot\n",
"Disallow: /\n",
"\n",
"User-agent: sentibot\n",
"Disallow: /\n",
"\n",
"User-agent: SEO-CRAWLING\n",
"Disallow: /\n",
"\n",
"User-agent: SEOENGWorldBot\n",
"Disallow: /\n",
"\n",
"User-agent: SEOkicks-Robot\n",
"Disallow: /\n",
"\n",
"User-agent: ShopWiki\n",
"Disallow: /\n",
"\n",
"User-agent: sistrix\n",
"Disallow: /\n",
"\n",
"User-agent: sitebot\n",
"Disallow: /\n",
"\n",
"User-agent: SiteSnagger\n",
"Disallow: /\n",
"\n",
"User-agent: Snoopy\n",
"Disallow: /\n",
"\n",
"User-agent: SocialSearcher\n",
"Disallow: /\n",
"\n",
"User-agent: Sogou\n",
"Disallow: /\n",
"\n",
"User-agent: SolomonoBot\n",
"Disallow: /\n",
"\n",
"User-agent: sootle\n",
"Disallow: /\n",
"\n",
"User-agent: Sosospider\n",
"Disallow: /\n",
"\n",
"User-agent: SpankBot\n",
"Disallow: /\n",
"\n",
"User-agent: spanner\n",
"Disallow: /\n",
"\n",
"User-agent: spbot\n",
"Disallow: /\n",
"\n",
"User-agent: Speedy\n",
"Disallow: /\n",
"\n",
"User-agent: Stanford\n",
"Disallow: /\n",
"\n",
"User-agent: Stanford Comp Sci\n",
"Disallow: /\n",
"\n",
"User-agent: SurveyBot\n",
"Disallow: /\n",
"\n",
"User-agent: suzuran\n",
"Disallow: /\n",
"\n",
"User-agent: Szukacz/1.4\n",
"Disallow: /\n",
"\n",
"User-agent: Szukacz/1.4\n",
"Disallow: /\n",
"\n",
"User-agent: Teleport\n",
"Disallow: /\n",
"\n",
"User-agent: TeleportPro\n",
"Disallow: /\n",
"\n",
"User-agent: Telesoft\n",
"Disallow: /\n",
"\n",
"User-agent: Teoma\n",
"Disallow: /\n",
"\n",
"User-agent: The Intraformant\n",
"Disallow: /\n",
"\n",
"User-agent: The\\ Incutio\\ XML-RPC\\ PHP\\ Library\n",
"Disallow: /\n",
"\n",
"User-agent: TheNomad\n",
"Disallow: /\n",
"\n",
"User-agent: toCrawl/UrlDispatcher\n",
"Disallow: /\n",
"\n",
"User-agent: True_Robot\n",
"Disallow: /\n",
"\n",
"User-agent: True_Robot/1.0\n",
"Disallow: /\n",
"\n",
"User-agent: turingos\n",
"Disallow: /\n",
"\n",
"User-agent: TurnitinBot\n",
"Disallow: /\n",
"\n",
"User-agent: uCrawler\n",
"Disallow: /\n",
"\n",
"User-agent: URL Control\n",
"Disallow: /\n",
"\n",
"User-agent: URL_Spider_Pro\n",
"Disallow: /\n",
"\n",
"User-agent: URLy Warning\n",
"Disallow: /\n",
"\n",
"User-agent: VCI\n",
"Disallow: /\n",
"\n",
"User-agent: VCI WebViewer VCI WebViewer Win32\n",
"Disallow: /\n",
"\n",
"User-agent: visaduhoc\\.info\n",
"Disallow: /\n",
"\n",
"User-agent: WBSearchBot\n",
"Disallow: /\n",
"\n",
"User-agent: Web Image Collector\n",
"Disallow: /\n",
"\n",
"User-agent: WebAuto\n",
"Disallow: /\n",
"\n",
"User-agent: WebBandit\n",
"Disallow: /\n",
"\n",
"User-agent: WebBandit/3.50\n",
"Disallow: /\n",
"\n",
"User-agent: WebCapture\n",
"Disallow: /\n",
"\n",
"User-agent: WebCopier\n",
"Disallow: /\n",
"\n",
"User-agent: WebEnhancer\n",
"Disallow: /\n",
"\n",
"User-agent: WebInDetail\\.com\n",
"Disallow: /\n",
"\n",
"User-agent: WebmasterWorld Extractor\n",
"Disallow: /\n",
"\n",
"User-agent: WebmasterWorldForumBot\n",
"Disallow: /\n",
"\n",
"User-agent: WebSauger\n",
"Disallow: /\n",
"\n",
"User-agent: Website Quester\n",
"Disallow: /\n",
"\n",
"User-agent: WEBSITEtheWEB\\.COM\n",
"Disallow: /\n",
"\n",
"User-agent: Webster Pro\n",
"Disallow: /\n",
"\n",
"User-agent: WebStripper\n",
"Disallow: /\n",
"\n",
"User-agent: WebVac\n",
"Disallow: /\n",
"\n",
"User-agent: WebZip\n",
"Disallow: /\n",
"\n",
"User-agent: WebZip/4.0\n",
"Disallow: /\n",
"\n",
"User-agent: Wget\n",
"Disallow: /\n",
"\n",
"User-agent: Wget/1.5.3\n",
"Disallow: /\n",
"\n",
"User-agent: Wget/1.6\n",
"Disallow: /\n",
"\n",
"User-agent: Wotbot\n",
"Disallow: /\n",
"\n",
"User-agent: www\\.integromedb\\.org\n",
"Disallow: /\n",
"\n",
"User-agent: WWW-Collector-E\n",
"Disallow: /\n",
"\n",
"User-agent: Xenu's\n",
"Disallow: /\n",
"\n",
"User-agent: Xenu's Link Sleuth 1.1c\n",
"Disallow: /\n",
"\n",
"User-agent: xpymep\\.exe\n",
"Disallow: /\n",
"\n",
"User-agent: YamanaLab-Robot\n",
"Disallow: /\n",
"\n",
"User-agent: YisouSpider\n",
"Disallow: /\n",
"\n",
"User-agent: YodaoBot\n",
"Disallow: /\n",
"\n",
"User-agent: YoudaoBot\n",
"Disallow: /\n",
"\n",
"User-agent: Zend_Http_Client\n",
"Disallow: /\n",
"\n",
"User-agent: Zeus\n",
"Disallow: /\n",
"\n",
"User-agent: Zeus 32297 Webster Pro V2.9 Win32\n",
"Disallow: /\n",
"\n",
"User-agent: Zeus Link Scout\n",
"Disallow: /\n",
"\n",
"User-agent: ZmEu\n",
"Disallow: /\n",
"\n",
"User-agent: ZumBot\n",
"Disallow: /\n",
"\n",
"User-agent: Linguee\n",
"Disallow: /\n",
"...\n",
"\n",
"User-agent: sogou\n",
"Disallow: /\n"
@ -1675,11 +876,14 @@
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -1690,8 +894,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
"version": "3.9.6"
},
"subtitle": "2.Wyszukiwarki — wprowadzenie[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 2. <i>Wyszukiwarki — roboty</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -314,7 +328,7 @@
"\n",
"* urllib\n",
"* request\n",
"* Beautiful Soup (do parsowania HTML-a)"
"* Beautiful Soup (do parsowania dokumentów HTML)"
]
},
{
@ -494,11 +508,14 @@
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -509,8 +526,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.1"
}
"version": "3.9.6"
},
"subtitle": "2.Wyszukiwarki — roboty[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,21 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"collapsed": false
},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 3. <i>Wyszukiwarki \u2014 TF-IDF</i> [wyk\u0142ad]</h2> \n",
"<h3> Filip Grali\u0144ski (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -11,9 +27,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Roboczy przykład\n",
"## Roboczy przyk\u0142ad\n",
"\n",
"Zakładamy, że mamy pewną kolekcję dokumentów $D = {d_1, \\ldots, d_N}$. ($N$ - liczba dokumentów w kolekcji)."
"Zak\u0142adamy, \u017ce mamy pewn\u0105 kolekcj\u0119 dokument\u00f3w $D = {d_1, \\ldots, d_N}$. ($N$ - liczba dokument\u00f3w w kolekcji)."
]
},
{
@ -38,10 +54,10 @@
"import Prelude hiding(words, take)\n",
"\n",
"collectionD :: [Text]\n",
"collectionD = [\"Ala ma kota.\", \"Podobno jest kot w butach.\", \"Ty chyba masz kota!\", \"But chyba zgubiłem.\", \"Kot ma kota.\"]\n",
"collectionD = [\"Ala ma kota.\", \"Podobno jest kot w butach.\", \"Ty chyba masz kota!\", \"But chyba zgubi\u0142em.\", \"Kot ma kota.\"]\n",
"\n",
"-- Operator (!!) zwraca element listy o podanym indeksie\n",
"-- (Przy większych listach będzie nieefektywne, ale nie będziemy komplikować)\n",
"-- (Przy wi\u0119kszych listach b\u0119dzie nieefektywne, ale nie b\u0119dziemy komplikowa\u0107)\n",
"Prelude.head collectionD"
]
},
@ -51,16 +67,16 @@
"source": [
"## Wydobycie tekstu\n",
"\n",
"Przykładowe narzędzia:\n",
"Przyk\u0142adowe narz\u0119dzia:\n",
"\n",
"* pdftotext\n",
"* antiword\n",
"* Tesseract OCR\n",
"* Apache Tika - uniwersalne narzędzie do wydobywania tekstu z różnych formatów\n",
"* Apache Tika - uniwersalne narz\u0119dzie do wydobywania tekstu z r\u00f3\u017cnych format\u00f3w\n",
"\n",
"## Normalizacja tekstu\n",
"\n",
"Cokolwiek robimy z tekstem, najpierw musimy go _znormalizować_."
"Cokolwiek robimy z tekstem, najpierw musimy go _znormalizowa\u0107_."
]
},
{
@ -69,8 +85,8 @@
"source": [
"### Tokenizacja\n",
"\n",
"Po pierwsze musimy podzielić tekst na _tokeny_, czyli wyrazapodobne jednostki.\n",
"Może po prostu podzielić po spacjach?"
"Po pierwsze musimy podzieli\u0107 tekst na _tokeny_, czyli wyrazapodobne jednostki.\n",
"Mo\u017ce po prostu podzieli\u0107 po spacjach?"
]
},
{
@ -108,7 +124,7 @@
],
"source": [
"tokenizeStupidly :: Text -> [Text]\n",
"-- words to funkcja z Data.Text, która dzieli po spacjach\n",
"-- words to funkcja z Data.Text, kt\u00f3ra dzieli po spacjach\n",
"tokenizeStupidly = words\n",
"\n",
"tokenizeStupidly $ Prelude.head collectionD"
@ -118,7 +134,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"A, trzeba _chociaż_ odsunąć znaki interpunkcyjne. Najprościej użyć wyrażenia regularnego. Warto użyć [unikodowych własności](https://en.wikipedia.org/wiki/Unicode_character_property) znaków i konstrukcji `\\p{...}`. "
"A, trzeba _chocia\u017c_ odsun\u0105\u0107 znaki interpunkcyjne. Najpro\u015bciej u\u017cy\u0107 wyra\u017cenia regularnego. Warto u\u017cy\u0107 [unikodowych w\u0142asno\u015bci](https://en.wikipedia.org/wiki/Unicode_character_property) znak\u00f3w i konstrukcji `\\p{...}`. "
]
},
{
@ -147,7 +163,7 @@
{
"data": {
"text/plain": [
"zgubiłem"
"zgubi\u0142em"
]
},
"metadata": {},
@ -178,7 +194,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Cała kolekcja stokenizowana:"
"Ca\u0142a kolekcja stokenizowana:"
]
},
{
@ -342,7 +358,7 @@
{
"data": {
"text/plain": [
"zgubiłem"
"zgubi\u0142em"
]
},
"metadata": {},
@ -402,9 +418,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Problemy z tokenizacją\n",
"#### Problemy z tokenizacj\u0105\n",
"\n",
"##### Język angielski"
"##### J\u0119zyk angielski"
]
},
{
@ -969,7 +985,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Inne języki?"
"##### Inne j\u0119zyki?"
]
},
{
@ -1116,7 +1132,7 @@
{
"data": {
"text/plain": [
"今日波兹南是贸易"
"\u4eca\u65e5\u6ce2\u5179\u5357\u662f\u8d38\u6613"
]
},
"metadata": {},
@ -1125,7 +1141,7 @@
{
"data": {
"text/plain": [
"、"
"\u3001"
]
},
"metadata": {},
@ -1134,7 +1150,7 @@
{
"data": {
"text/plain": [
"工业及教育的中心"
"\u5de5\u4e1a\u53ca\u6559\u80b2\u7684\u4e2d\u5fc3"
]
},
"metadata": {},
@ -1143,7 +1159,7 @@
{
"data": {
"text/plain": [
"。"
"\u3002"
]
},
"metadata": {},
@ -1152,7 +1168,7 @@
{
"data": {
"text/plain": [
"波兹南是波兰第五大的城市及第四大的工业中心"
"\u6ce2\u5179\u5357\u662f\u6ce2\u5170\u7b2c\u4e94\u5927\u7684\u57ce\u5e02\u53ca\u7b2c\u56db\u5927\u7684\u5de5\u4e1a\u4e2d\u5fc3"
]
},
"metadata": {},
@ -1161,7 +1177,7 @@
{
"data": {
"text/plain": [
""
"\uff0c"
]
},
"metadata": {},
@ -1170,7 +1186,7 @@
{
"data": {
"text/plain": [
"波兹南亦是大波兰省的行政首府"
"\u6ce2\u5179\u5357\u4ea6\u662f\u5927\u6ce2\u5170\u7701\u7684\u884c\u653f\u9996\u5e9c"
]
},
"metadata": {},
@ -1179,7 +1195,7 @@
{
"data": {
"text/plain": [
"。"
"\u3002"
]
},
"metadata": {},
@ -1188,7 +1204,7 @@
{
"data": {
"text/plain": [
"也舉辦有不少展覽會"
"\u4e5f\u8209\u8fa6\u6709\u4e0d\u5c11\u5c55\u89bd\u6703"
]
},
"metadata": {},
@ -1197,7 +1213,7 @@
{
"data": {
"text/plain": [
"。"
"\u3002"
]
},
"metadata": {},
@ -1206,7 +1222,7 @@
{
"data": {
"text/plain": [
"是波蘭西部重要的交通中心都市"
"\u662f\u6ce2\u862d\u897f\u90e8\u91cd\u8981\u7684\u4ea4\u901a\u4e2d\u5fc3\u90fd\u5e02"
]
},
"metadata": {},
@ -1215,7 +1231,7 @@
{
"data": {
"text/plain": [
"。"
"\u3002"
]
},
"metadata": {},
@ -1223,7 +1239,7 @@
}
],
"source": [
"tokenize \"今日波兹南是贸易、工业及教育的中心。波兹南是波兰第五大的城市及第四大的工业中心,波兹南亦是大波兰省的行政首府。也舉辦有不少展覽會。是波蘭西部重要的交通中心都市。\""
"tokenize \"\u4eca\u65e5\u6ce2\u5179\u5357\u662f\u8d38\u6613\u3001\u5de5\u4e1a\u53ca\u6559\u80b2\u7684\u4e2d\u5fc3\u3002\u6ce2\u5179\u5357\u662f\u6ce2\u5170\u7b2c\u4e94\u5927\u7684\u57ce\u5e02\u53ca\u7b2c\u56db\u5927\u7684\u5de5\u4e1a\u4e2d\u5fc3\uff0c\u6ce2\u5179\u5357\u4ea6\u662f\u5927\u6ce2\u5170\u7701\u7684\u884c\u653f\u9996\u5e9c\u3002\u4e5f\u8209\u8fa6\u6709\u4e0d\u5c11\u5c55\u89bd\u6703\u3002\u662f\u6ce2\u862d\u897f\u90e8\u91cd\u8981\u7684\u4ea4\u901a\u4e2d\u5fc3\u90fd\u5e02\u3002\""
]
},
{
@ -1274,16 +1290,16 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"_Lematyzacja_ to sprowadzenie do formy podstawowej (_lematu_), np. \"krześle\" do \"krzesło\", \"zrobimy\" do \"zrobić\" dla języka polskiego, \"chairs\" do \"chair\", \"made\" do \"make\" dla języka angielskiego."
"_Lematyzacja_ to sprowadzenie do formy podstawowej (_lematu_), np. \"krze\u015ble\" do \"krzes\u0142o\", \"zrobimy\" do \"zrobi\u0107\" dla j\u0119zyka polskiego, \"chairs\" do \"chair\", \"made\" do \"make\" dla j\u0119zyka angielskiego."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Lematyzacja dla języka polskiego jest bardzo trudna, praktycznie nie sposób wykonać ją regułowo, po prostu musimy się postarać o bardzo obszerny _słownik form fleksyjnych_.\n",
"Lematyzacja dla j\u0119zyka polskiego jest bardzo trudna, praktycznie nie spos\u00f3b wykona\u0107 j\u0105 regu\u0142owo, po prostu musimy si\u0119 postara\u0107 o bardzo obszerny _s\u0142ownik form fleksyjnych_.\n",
"\n",
"Na potrzeby tego wykładu stwórzmy sobie mały słownik form fleksyjnych w postaci tablicy asocjacyjnej (haszującej)."
"Na potrzeby tego wyk\u0142adu stw\u00f3rzmy sobie ma\u0142y s\u0142ownik form fleksyjnych w postaci tablicy asocjacyjnej (haszuj\u0105cej)."
]
},
{
@ -1418,7 +1434,7 @@
{
"data": {
"text/plain": [
"mieć"
"mie\u0107"
]
},
"metadata": {},
@ -1454,7 +1470,7 @@
{
"data": {
"text/plain": [
"kupiłem"
"kupi\u0142em"
]
},
"metadata": {},
@ -1486,16 +1502,16 @@
"mockInflectionDictionary = Map.fromList [\n",
" (\"kota\", \"kot\"),\n",
" (\"butach\", \"but\"),\n",
" (\"masz\", \"mieć\"),\n",
" (\"ma\", \"mieć\"),\n",
" (\"masz\", \"mie\u0107\"),\n",
" (\"ma\", \"mie\u0107\"),\n",
" (\"buta\", \"but\"),\n",
" (\"zgubiłem\", \"zgubić\")]\n",
" (\"zgubi\u0142em\", \"zgubi\u0107\")]\n",
"\n",
"lemmatizeWord :: Map Text Text -> Text -> Text\n",
"lemmatizeWord dict w = findWithDefault w w dict\n",
"\n",
"lemmatizeWord mockInflectionDictionary \"butach\"\n",
"-- a tego nie ma w naszym słowniczku, więc zwracamy to samo\n",
"-- a tego nie ma w naszym s\u0142owniczku, wi\u0119c zwracamy to samo\n",
"lemmatizeWord mockInflectionDictionary \"butami\"\n",
"\n",
"lemmatize :: Map Text Text -> [Text] -> [Text]\n",
@ -1503,16 +1519,16 @@
"\n",
"lemmatize mockInflectionDictionary $ tokenize $ collectionD !! 0 \n",
"\n",
"lemmatize mockInflectionDictionary $ tokenize \"Wczoraj kupiłem kota.\""
"lemmatize mockInflectionDictionary $ tokenize \"Wczoraj kupi\u0142em kota.\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Pytanie**: Nawet w naszym słowniczku mamy problemy z niejednoznacznością lematyzacji. Jakie?\n",
"**Pytanie**: Nawet w naszym s\u0142owniczku mamy problemy z niejednoznaczno\u015bci\u0105 lematyzacji. Jakie?\n",
"\n",
"Obszerny słownik form fleksyjnych dla języka polskiego: http://zil.ipipan.waw.pl/PoliMorf?action=AttachFile&do=view&target=PoliMorf-0.6.7.tab.gz"
"Obszerny s\u0142ownik form fleksyjnych dla j\u0119zyka polskiego: http://zil.ipipan.waw.pl/PoliMorf?action=AttachFile&do=view&target=PoliMorf-0.6.7.tab.gz"
]
},
{
@ -1521,14 +1537,14 @@
"source": [
"### Stemowanie\n",
"\n",
"Stemowanie (rdzeniowanie) obcina wyraz do _rdzenia_ niekoniecznie będącego sensownym wyrazem, np. \"krześle\" może być rdzeniowane do \"krześl\", \"krześ\" albo \"krzes\", \"zrobimy\" do \"zrobi\".\n",
"Stemowanie (rdzeniowanie) obcina wyraz do _rdzenia_ niekoniecznie b\u0119d\u0105cego sensownym wyrazem, np. \"krze\u015ble\" mo\u017ce by\u0107 rdzeniowane do \"krze\u015bl\", \"krze\u015b\" albo \"krzes\", \"zrobimy\" do \"zrobi\".\n",
"\n",
"* stemowanie nie jest tak dobrze określone jak lematyzacja (można robić na wiele sposobów)\n",
"* bardziej podatne na metody regułowe (choć dla polskiego i tak trudno)\n",
"* dla angielskiego istnieją znane algorytmy stemowania, np. [algorytm Portera](https://tartarus.org/martin/PorterStemmer/def.txt)\n",
"* zob. też [program Snowball](https://snowballstem.org/) z regułami dla wielu języków\n",
"* stemowanie nie jest tak dobrze okre\u015blone jak lematyzacja (mo\u017cna robi\u0107 na wiele sposob\u00f3w)\n",
"* bardziej podatne na metody regu\u0142owe (cho\u0107 dla polskiego i tak trudno)\n",
"* dla angielskiego istniej\u0105 znane algorytmy stemowania, np. [algorytm Portera](https://tartarus.org/martin/PorterStemmer/def.txt)\n",
"* zob. te\u017c [program Snowball](https://snowballstem.org/) z regu\u0142ami dla wielu j\u0119zyk\u00f3w\n",
"\n",
"Prosty stemmer \"dla ubogich\" dla języka polskiego to obcinanie do sześciu znaków."
"Prosty stemmer \"dla ubogich\" dla j\u0119zyka polskiego to obcinanie do sze\u015bciu znak\u00f3w."
]
},
{
@ -1566,7 +1582,7 @@
{
"data": {
"text/plain": [
"źdźbła"
"\u017ad\u017ab\u0142a"
]
},
"metadata": {},
@ -1580,7 +1596,7 @@
"poorMansStemming \"zrobimy\"\n",
"poorMansStemming \"komputerami\"\n",
"poorMansStemming \"butach\"\n",
"poorMansStemming \"źdźbłami\"\n"
"poorMansStemming \"\u017ad\u017ab\u0142ami\"\n"
]
},
{
@ -1589,7 +1605,7 @@
"source": [
"### _Stop words_\n",
"\n",
"Często wyszukiwarki pomijają krótkie, częste i nieniosące znaczenia słowa - _stop words_ (_słowa przestankowe_)."
"Cz\u0119sto wyszukiwarki pomijaj\u0105 kr\u00f3tkie, cz\u0119ste i nienios\u0105ce znaczenia s\u0142owa - _stop words_ (_s\u0142owa przestankowe_)."
]
},
{
@ -1620,9 +1636,9 @@
"isStopWord :: Text -> Bool\n",
"isStopWord \"w\" = True\n",
"isStopWord \"jest\" = True\n",
"isStopWord \"że\" = True\n",
"-- przy okazji możemy pozbyć się znaków interpunkcyjnych\n",
"isStopWord w = w ≈ [re|^\\p{P}+$|]\n",
"isStopWord \"\u017ce\" = True\n",
"-- przy okazji mo\u017cemy pozby\u0107 si\u0119 znak\u00f3w interpunkcyjnych\n",
"isStopWord w = w \u2248 [re|^\\p{P}+$|]\n",
"\n",
"isStopWord \"kot\"\n",
"isStopWord \"!\"\n"
@ -1672,20 +1688,20 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"**Pytanie**: Jakim zapytaniom usuwanie _stop words_ może szkodzić? Podać przykłady dla języka polskiego i angielskiego. "
"**Pytanie**: Jakim zapytaniom usuwanie _stop words_ mo\u017ce szkodzi\u0107? Poda\u0107 przyk\u0142ady dla j\u0119zyka polskiego i angielskiego. "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Normalizacja - różności\n",
"### Normalizacja - r\u00f3\u017cno\u015bci\n",
"\n",
"W skład normalizacji może też wchodzić:\n",
"W sk\u0142ad normalizacji mo\u017ce te\u017c wchodzi\u0107:\n",
"\n",
"* poprawianie błędów literowych\n",
"* sprowadzanie do małych liter (lower-casing czy raczej case-folding)\n",
"* usuwanie znaków diakrytycznych\n",
"* poprawianie b\u0142\u0119d\u00f3w literowych\n",
"* sprowadzanie do ma\u0142ych liter (lower-casing czy raczej case-folding)\n",
"* usuwanie znak\u00f3w diakrytycznych\n",
"\n"
]
},
@ -1697,7 +1713,7 @@
{
"data": {
"text/plain": [
"żdźbło"
"\u017cd\u017ab\u0142o"
]
},
"metadata": {},
@ -1705,7 +1721,7 @@
}
],
"source": [
"toLower \"ŻDŹBŁO\""
"toLower \"\u017bD\u0179B\u0141O\""
]
},
{
@ -1716,7 +1732,7 @@
{
"data": {
"text/plain": [
"źdźbło"
"\u017ad\u017ab\u0142o"
]
},
"metadata": {},
@ -1724,27 +1740,27 @@
}
],
"source": [
"toCaseFold \"ŹDŹBŁO\""
"toCaseFold \"\u0179D\u0179B\u0141O\""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Pytanie:** Kiedy _case-folding_ da inny wynik niż _lower-casing_? Jakie to ma praktyczne znaczenie?"
"**Pytanie:** Kiedy _case-folding_ da inny wynik ni\u017c _lower-casing_? Jakie to ma praktyczne znaczenie?"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Normalizacja jako całościowy proces\n",
"### Normalizacja jako ca\u0142o\u015bciowy proces\n",
"\n",
"Najważniejsza zasada: dokumenty w naszej kolekcji powinny być normalizowane w dokładnie taki sposób, jak zapytania.\n",
"Najwa\u017cniejsza zasada: dokumenty w naszej kolekcji powinny by\u0107 normalizowane w dok\u0142adnie taki spos\u00f3b, jak zapytania.\n",
"\n",
"Efektem normalizacji jest zamiana dokumentu na ciąg _termów_ (ang. _terms_), czyli znormalizowanych wyrazów.\n",
"Efektem normalizacji jest zamiana dokumentu na ci\u0105g _term\u00f3w_ (ang. _terms_), czyli znormalizowanych wyraz\u00f3w.\n",
"\n",
"Innymi słowy po normalizacji dokument $d_i$ traktujemy jako ciąg termów $t_i^1,\\dots,t_i^{|d_i|}$."
"Innymi s\u0142owy po normalizacji dokument $d_i$ traktujemy jako ci\u0105g term\u00f3w $t_i^1,\\dots,t_i^{|d_i|}$."
]
},
{
@ -1764,7 +1780,7 @@
{
"data": {
"text/plain": [
"mieć"
"mie\u0107"
]
},
"metadata": {},
@ -1827,7 +1843,7 @@
{
"data": {
"text/plain": [
"mieć"
"mie\u0107"
]
},
"metadata": {},
@ -1863,7 +1879,7 @@
{
"data": {
"text/plain": [
"zgubić"
"zgubi\u0107"
]
},
"metadata": {},
@ -1881,7 +1897,7 @@
{
"data": {
"text/plain": [
"mieć"
"mie\u0107"
]
},
"metadata": {},
@ -1908,11 +1924,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Zbiór wszystkich termów w kolekcji dokumentów nazywamy słownikiem (ang. _vocabulary_), nie mylić ze słownikiem jako strukturą danych w Pythonie (_dictionary_).\n",
"Zbi\u00f3r wszystkich term\u00f3w w kolekcji dokument\u00f3w nazywamy s\u0142ownikiem (ang. _vocabulary_), nie myli\u0107 ze s\u0142ownikiem jako struktur\u0105 danych w Pythonie (_dictionary_).\n",
"\n",
"$$V = \\bigcup_{i=1}^N \\{t_i^1,\\dots,t_i^{|d_i|}\\}$$\n",
"\n",
"(To zbiór, więc liczymy bez powtórzeń!)"
"(To zbi\u00f3r, wi\u0119c liczymy bez powt\u00f3rze\u0144!)"
]
},
{
@ -1943,9 +1959,9 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Jak wyszukiwarka może być szybka?\n",
"## Jak wyszukiwarka mo\u017ce by\u0107 szybka?\n",
"\n",
"_Odwrócony indeks_ (ang. _inverted index_) pozwala wyszukiwarce szybko szukać w milionach dokumentów. Odwrócony indeks to prostu... indeks, jaki znamy z książek (mapowanie słów na numery stron/dokumentów).\n",
"_Odwr\u00f3cony indeks_ (ang. _inverted index_) pozwala wyszukiwarce szybko szuka\u0107 w milionach dokument\u00f3w. Odwr\u00f3cony indeks to prostu... indeks, jaki znamy z ksi\u0105\u017cek (mapowanie s\u0142\u00f3w na numery stron/dokument\u00f3w).\n",
"\n",
"\n",
"\n"
@ -2336,36 +2352,36 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"## Relewantność\n",
"## Relewantno\u015b\u0107\n",
"\n",
"Potrafimy szybko przeszukiwać znormalizowane dokumenty, ale które dokumenty są ważne (_relewantne_) względem potrzeby informacyjnej użytkownika?\n",
"Potrafimy szybko przeszukiwa\u0107 znormalizowane dokumenty, ale kt\u00f3re dokumenty s\u0105 wa\u017cne (_relewantne_) wzgl\u0119dem potrzeby informacyjnej u\u017cytkownika?\n",
"\n",
"### Zapytania boole'owskie\n",
"\n",
"* `pizzeria Poznań dowóz` to `pizzeria AND Poznań AND dowóz` czy `pizzeria OR Poznań OR dowóz`\n",
"* `(pizzeria OR pizza OR tratoria) AND Poznań AND dowóz\n",
"* `pizzeria AND Poznań AND dowóz AND NOT golonka`\n",
"* `pizzeria Pozna\u0144 dow\u00f3z` to `pizzeria AND Pozna\u0144 AND dow\u00f3z` czy `pizzeria OR Pozna\u0144 OR dow\u00f3z`\n",
"* `(pizzeria OR pizza OR tratoria) AND Pozna\u0144 AND dow\u00f3z\n",
"* `pizzeria AND Pozna\u0144 AND dow\u00f3z AND NOT golonka`\n",
"\n",
"Jak domyślnie interpretować zapytanie?\n",
"Jak domy\u015blnie interpretowa\u0107 zapytanie?\n",
"\n",
"* jako zapytanie AND -- być może za mało dokumentów\n",
"* rozwiązanie pośrednie?\n",
"* jako zapytanie OR -- być może za dużo dokumentów\n",
"* jako zapytanie AND -- by\u0107 mo\u017ce za ma\u0142o dokument\u00f3w\n",
"* rozwi\u0105zanie po\u015brednie?\n",
"* jako zapytanie OR -- by\u0107 mo\u017ce za du\u017co dokument\u00f3w\n",
"\n",
"Możemy jakieś miary dopasowania dokumentu do zapytania, żeby móc posortować dokumenty...\n",
"Mo\u017cemy jakie\u015b miary dopasowania dokumentu do zapytania, \u017ceby m\u00f3c posortowa\u0107 dokumenty...\n",
"\n",
"### Mierzenie dopasowania dokumentu do zapytania\n",
"\n",
"Potrzebujemy jakieś funkcji $\\sigma : Q x D \\rightarrow \\mathbb{R}$. \n"
"Potrzebujemy jakie\u015b funkcji $\\sigma : Q x D \\rightarrow \\mathbb{R}$. \n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Musimy jakoś zamienić dokumenty na liczby, tj. dokumenty na wektory liczb, a całą kolekcję na macierz.\n",
"Musimy jako\u015b zamieni\u0107 dokumenty na liczby, tj. dokumenty na wektory liczb, a ca\u0142\u0105 kolekcj\u0119 na macierz.\n",
"\n",
"Po pierwsze ponumerujmy wszystkie termy ze słownika."
"Po pierwsze ponumerujmy wszystkie termy ze s\u0142ownika."
]
},
{
@ -2431,7 +2447,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Napiszmy funkcję, która _wektoryzuje_ znormalizowany dokument.\n",
"Napiszmy funkcj\u0119, kt\u00f3ra _wektoryzuje_ znormalizowany dokument.\n",
"\n"
]
},
@ -2562,7 +2578,7 @@
{
"data": {
"text/plain": [
"mieć"
"mie\u0107"
]
},
"metadata": {},
@ -2614,7 +2630,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Jak inaczej uwzględnić częstość wyrazów?\n",
"### Jak inaczej uwzgl\u0119dni\u0107 cz\u0119sto\u015b\u0107 wyraz\u00f3w?\n",
"\n",
"<div style=\"display:none\">\n",
" $\n",
@ -2750,7 +2766,7 @@
{
"data": {
"text/plain": [
"mieć"
"mie\u0107"
]
},
"metadata": {},
@ -2809,32 +2825,32 @@
" $\n",
"</div>\n",
"\n",
"### Odwrotna częstość dokumentowa\n",
"### Odwrotna cz\u0119sto\u015b\u0107 dokumentowa\n",
"\n",
"Czy wszystkie wyrazy są tak samo ważne?\n",
"Czy wszystkie wyrazy s\u0105 tak samo wa\u017cne?\n",
"\n",
"**NIE.** Wyrazy pojawiające się w wielu dokumentach są mniej ważne.\n",
"**NIE.** Wyrazy pojawiaj\u0105ce si\u0119 w wielu dokumentach s\u0105 mniej wa\u017cne.\n",
"\n",
"Aby to uwzględnić, przemnażamy frekwencję wyrazu przez _odwrotną\n",
" częstość w dokumentach_ (_inverse document frequency_):\n",
"Aby to uwzgl\u0119dni\u0107, przemna\u017camy frekwencj\u0119 wyrazu przez _odwrotn\u0105\n",
" cz\u0119sto\u015b\u0107 w dokumentach_ (_inverse document frequency_):\n",
"\n",
"$$\\idf_t = \\log \\frac{N}{\\df_t},$$\n",
"\n",
"gdzie:\n",
"\n",
"* $\\idf_t$ - odwrotna częstość wyrazu $t$ w dokumentach\n",
"* $\\idf_t$ - odwrotna cz\u0119sto\u015b\u0107 wyrazu $t$ w dokumentach\n",
"\n",
"* $N$ - liczba dokumentów w kolekcji\n",
"* $N$ - liczba dokument\u00f3w w kolekcji\n",
"\n",
"* $\\df_f$ - w ilu dokumentach wystąpił wyraz $t$?\n",
"* $\\df_f$ - w ilu dokumentach wyst\u0105pi\u0142 wyraz $t$?\n",
"\n",
"#### Dlaczego idf?\n",
"\n",
"term $t$ wystąpił...\n",
"term $t$ wyst\u0105pi\u0142...\n",
"\n",
"* w 1 dokumencie, $\\idf_t = \\log N/1 = \\log N$\n",
"* 2 razy w kolekcji, $\\idf_t = \\log N/2$ lub $\\log N$\n",
"* w połowie dokumentów kolekcji, $\\idf_t = \\log N/(N/2) = \\log 2$\n",
"* w po\u0142owie dokument\u00f3w kolekcji, $\\idf_t = \\log N/(N/2) = \\log 2$\n",
"* we wszystkich dokumentach, $\\idf_t = \\log N/N = \\log 1 = 0$\n",
"\n"
]
@ -2888,7 +2904,7 @@
"source": [
"#### Co z tego wynika?\n",
"\n",
"Zamiast $\\tf_{t,d}$ będziemy w wektorach rozpatrywać wartości:\n",
"Zamiast $\\tf_{t,d}$ b\u0119dziemy w wektorach rozpatrywa\u0107 warto\u015bci:\n",
"\n",
"$$\\tfidf_{t,d} = \\tf_{t,d} \\times \\idf_{t}$$\n",
"\n"
@ -2911,7 +2927,7 @@
{
"data": {
"text/plain": [
"mieć"
"mie\u0107"
]
},
"metadata": {},
@ -2999,21 +3015,21 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podobieństwo kosinusowe\n",
"### Podobie\u0144stwo kosinusowe\n",
"\n",
"_Overlap score measure_ nie jest jedyną możliwą metryką, za pomocą której możemy mierzyć dopasowanie dokumentu do zapytania. Możemy również sięgnąć po intuicje geometryczne (skoro mamy do czynienia z wektorami).\n",
"_Overlap score measure_ nie jest jedyn\u0105 mo\u017cliw\u0105 metryk\u0105, za pomoc\u0105 kt\u00f3rej mo\u017cemy mierzy\u0107 dopasowanie dokumentu do zapytania. Mo\u017cemy r\u00f3wnie\u017c si\u0119gn\u0105\u0107 po intuicje geometryczne (skoro mamy do czynienia z wektorami).\n",
"\n",
"**Pytanie**: Ile wymiarów mają wektory, na których operujemy? Jak \"wyglądają\" te wektory? Czy możemy wykonywać na nich standardowe operacje geometryczne czy te, które znamy z geometrii liniowej?\n",
"**Pytanie**: Ile wymiar\u00f3w maj\u0105 wektory, na kt\u00f3rych operujemy? Jak \"wygl\u0105daj\u0105\" te wektory? Czy mo\u017cemy wykonywa\u0107 na nich standardowe operacje geometryczne czy te, kt\u00f3re znamy z geometrii liniowej?\n",
"\n",
"#### Podobieństwo między dokumentami\n",
"#### Podobie\u0144stwo mi\u0119dzy dokumentami\n",
"\n",
"Zajmijmy się teraz poszukiwaniem miary mierzącej podobieństwo między dokumentami $d_1$ i $d_2$ (czyli poszukujemy sensownej funkcji $\\sigma : D x D \\rightarrow \\mathbb{R}$).\n",
"Zajmijmy si\u0119 teraz poszukiwaniem miary mierz\u0105cej podobie\u0144stwo mi\u0119dzy dokumentami $d_1$ i $d_2$ (czyli poszukujemy sensownej funkcji $\\sigma : D x D \\rightarrow \\mathbb{R}$).\n",
"\n",
"**Uwaga** Pojęcia \"miary\" używamy nieformalnie, nie spełnia ona założeń znanych z teorii miary.\n",
"**Uwaga** Poj\u0119cia \"miary\" u\u017cywamy nieformalnie, nie spe\u0142nia ona za\u0142o\u017ce\u0144 znanych z teorii miary.\n",
"\n",
"Rozpatrzmy zbiorek tekstów legend miejskich z <git://gonito.net/polish-urban-legends>.\n",
"Rozpatrzmy zbiorek tekst\u00f3w legend miejskich z <git://gonito.net/polish-urban-legends>.\n",
"\n",
"(To autentyczne teksty z Internentu, z językiem potocznym, wulgarnym itd.)\n",
"(To autentyczne teksty z Internentu, z j\u0119zykiem potocznym, wulgarnym itd.)\n",
"\n",
"```\n",
" git clone git://gonito.net/polish-urban-legends\n",
@ -3038,7 +3054,7 @@
{
"data": {
"text/plain": [
"Opowieść prawdziwa... Olsztyn, akademik, 7 piętro, impreza u Mariusza, jak to na polskiej najebce bywa ktoś rzucił tekstem: \"Mariusz nie zjedziesz na nartach po schodach\". Sprawa ucichla, studencii wrocili do tego co lubia i w sumie umieją najbardziej czyli picia, lecz nad ranem kolo godziny 6.00 ludzia przypomnialo sie ze Mariusz miał zjechać na nartach po schodach. Tu warto wspomnieć że Mariusz był zapalonym narciarzem stąd właśnie w jego pokoju znalezc można bylo narty, bo po ki huj komuś narty w Olsztynie! Tak wracajac do historii nasz bohater odział się w sprzet, podszed do schodow i niestety dał radę zjechać jedynie w połowie, gdyż jak to powiedzial \"no kurwa potknąłem sie\", ale nieustraszoony Mariusz próbowal dalej. Nastepny zjazd byl perfekcyjny, jedno pietro zanim, niestety pomiedzy 6 a 5 pietrem Mariusza natrafil na Pania sprzątaczke, która potrącił i zwiał z miejsca wypadku. Ok godziny 10.00 nastopilo przebudzenie Mariusza, ktory zaraz po obudzeniu uslyszal co narobił, mianowicie o skutkach potracenia, Pani sprzataczka złamala rękę i trafiła do szpitala. Mogły powstać przez to cieżkie konsekwencje, Mariusz mógł wyleciec z akademika jeżeli kierownik dowie sie o calym zajściu. Wiec koledzy poradzili narciażowi, aby kupił kwiaty i bombonierkę i poszedł do szpitala z przeprosinami. Po szybkich zakupach w sasiedniej Biedrące, Mariusz byl przygotowany na konfrontacje z Pania sprzątaczka, ale nie mogło pojść pięknie i gładko. Po wejściu do szpitala nasz bohater skierowal swoje kroki do recepcji pytajac się o ciocię, która miała wypadek w akademiku, recepcjonistka skierowała go do lekarza, gdzie czekał na jego wyjście ok 15 minut, gdy lekarz już wyszedł ten odrazu podleciał do niego, żeby spytać się o stan zdrowia Pani sprzątaczki. Wnet uslyszla od lekarz, niestety Pani teraz jest u psychiatry po twierdzi, że ktoś potracil ja zjeżdzajac na nartach w akademiku. Po uslyszeniu tej wiadomosci Mariusz odwrocił się, wybiegł, kupił piecie i szybko pobiegł do akademika pić dalej! Morał... student potrafi!"
"Opowie\u015b\u0107 prawdziwa... Olsztyn, akademik, 7 pi\u0119tro, […]"
]
},
"metadata": {},
@ -3877,7 +3893,7 @@
{
"data": {
"text/plain": [
"Ja podejrzewam że o polowaniu nie było mowy, po prostu znalazł martwego szczupaka i skorzystał z okazji! Mnie mocno zdziwiła jego siła żeby taki pół kilogramowy okaz szczupaka przesuwać o parę metrów i to w trzcinach! Szacuneczek. Przypomniala mi sie historia którą kiedys zaslyszalem o wlascicielce pytona, ktory nagle polozyl sie wzdluz jej łóżka. Leżał tak wyciągniety jak struna dłuższy czas jak nieżywy (a był długości łóżka), więc kobitka zadzonila do weterynarza co ma robić. Usłyszała że ma szybko zamknąć się w łazience i poczekać na niego bo pyton ją mierzy jako potencjalną ofiarę (czy mu się zmieści w brzuchu...). Wierzyć, nie wierzyć? Kiedyś nie wierzyłem ale od kilku dni mam wątpliwosci... Pozdrawiam"
"Ja podejrzewam \u017ce o polowaniu nie by\u0142o mowy, po prostu znalaz\u0142 martwego szczupaka i skorzysta\u0142 z okazji! Mnie mocno zdziwi\u0142a jego si\u0142a \u017ceby taki p\u00f3\u0142 kilogramowy okaz szczupaka przesuwa\u0107 o par\u0119 metr\u00f3w i to w trzcinach! Szacuneczek. Przypomniala mi sie historia kt\u00f3r\u0105 kiedys zaslyszalem o wlascicielce pytona, ktory nagle polozyl sie wzdluz jej \u0142\u00f3\u017cka. Le\u017ca\u0142 tak wyci\u0105gniety jak struna d\u0142u\u017cszy czas jak nie\u017cywy (a by\u0142 d\u0142ugo\u015bci \u0142\u00f3\u017cka), wi\u0119c kobitka zadzonila do weterynarza co ma robi\u0107. Us\u0142ysza\u0142a \u017ce ma szybko zamkn\u0105\u0107 si\u0119 w \u0142azience i poczeka\u0107 na niego bo pyton j\u0105 mierzy jako potencjaln\u0105 ofiar\u0119 (czy mu si\u0119 zmie\u015bci w brzuchu...). Wierzy\u0107, nie wierzy\u0107? Kiedy\u015b nie wierzy\u0142em ale od kilku dni mam w\u0105tpliwosci... Pozdrawiam"
]
},
"metadata": {},
@ -3935,7 +3951,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Wektoryzujemy całą kolekcję:"
"Wektoryzujemy ca\u0142\u0105 kolekcj\u0119:"
]
},
{
@ -3962,14 +3978,14 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Szukamy funkcji $sigma$, która da wysoką wartość dla tekstów dotyczących tego samego wątku legendowego (np. $d_1$ i $d_2$ mówią o wężu przymierzającym się do zjedzenia swojej właścicielki) i niską dla tekstów z różnych wątków (np. $d_1$ opowiada o wężu ludojadzie, $d_2$ - bałwanku na hydrancie)."
"Szukamy funkcji $sigma$, kt\u00f3ra da wysok\u0105 warto\u015b\u0107 dla tekst\u00f3w dotycz\u0105cych tego samego w\u0105tku legendowego (np. $d_1$ i $d_2$ m\u00f3wi\u0105 o w\u0119\u017cu przymierzaj\u0105cym si\u0119 do zjedzenia swojej w\u0142a\u015bcicielki) i nisk\u0105 dla tekst\u00f3w z r\u00f3\u017cnych w\u0105tk\u00f3w (np. $d_1$ opowiada o w\u0119\u017cu ludojadzie, $d_2$ - ba\u0142wanku na hydrancie)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Może po prostu odległość euklidesowa, skoro to punkty w wielowymiarowej przestrzeni?"
"Mo\u017ce po prostu odleg\u0142o\u015b\u0107 euklidesowa, skoro to punkty w wielowymiarowej przestrzeni?"
]
},
{
@ -4282,13 +4298,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Problem: za dużo zależy od długości tekstu.\n",
"Problem: za du\u017co zale\u017cy od d\u0142ugo\u015bci tekstu.\n",
"\n",
"Rozwiązanie: znormalizować wektor $v$ do wektora jednostkowego.\n",
"Rozwi\u0105zanie: znormalizowa\u0107 wektor $v$ do wektora jednostkowego.\n",
"\n",
"$$ \\vec{1}(v) = \\frac{v}{|v|} $$\n",
"\n",
"Taki wektor ma długość 1!"
"Taki wektor ma d\u0142ugo\u015b\u0107 1!"
]
},
{
@ -4351,11 +4367,11 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Podobieństwo kosinusowe\n",
"#### Podobie\u0144stwo kosinusowe\n",
"\n",
"Częściej zamiast odległości euklidesowej stosuje się podobieństwo kosinusowe, czyli kosinus kąta między wektorami.\n",
"Cz\u0119\u015bciej zamiast odleg\u0142o\u015bci euklidesowej stosuje si\u0119 podobie\u0144stwo kosinusowe, czyli kosinus k\u0105ta mi\u0119dzy wektorami.\n",
"\n",
"Wektor dokumentu ($\\vec{V}(d)$) - wektor, którego składowe odpowiadają wyrazom.\n",
"Wektor dokumentu ($\\vec{V}(d)$) - wektor, kt\u00f3rego sk\u0142adowe odpowiadaj\u0105 wyrazom.\n",
"\n",
"$$\\sigma(d_1,d_2) = \\cos\\theta(\\vec{V}(d_1),\\vec{V}(d_2)) = \\frac{\\vec{V}(d_1) \\cdot \\vec{V}(d_2)}{|\\vec{V}(d_1)||\\vec{V}(d_2)|} $$\n",
"\n",
@ -4367,7 +4383,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Zauważmy, że jest to iloczyn skalarny znormalizowanych wektorów!\n",
"Zauwa\u017cmy, \u017ce jest to iloczyn skalarny znormalizowanych wektor\u00f3w!\n",
"\n",
"$$\\sigma(d_1,d_2) = \\vec{1}(\\vec{V}(d_1)) \\times \\vec{1}(\\vec{V}(d_2)) $$"
]
@ -4388,10 +4404,10 @@
}
],
"source": [
"(✕) :: [Double] -> [Double] -> Double\n",
"(✕) v1 v2 = sum $ Prelude.zipWith (*) v1 v2\n",
"(\u2715) :: [Double] -> [Double] -> Double\n",
"(\u2715) v1 v2 = sum $ Prelude.zipWith (*) v1 v2\n",
"\n",
"[2, 1, 0] ✕ [-2, 5, 10]"
"[2, 1, 0] \u2715 [-2, 5, 10]"
]
},
{
@ -4423,7 +4439,7 @@
}
],
"source": [
"cosineSim v1 v2 = toUnitVector v1 ✕ toUnitVector v2\n",
"cosineSim v1 v2 = toUnitVector v1 \u2715 toUnitVector v2\n",
"\n",
"paintMatrix cosineSim labelsLimited limitedL"
]
@ -4436,7 +4452,7 @@
{
"data": {
"text/plain": [
"na tylnym siedzeniu w autobusie siedzi matka z 7-8 letnim synkiem. naprzeciwko synka siedzi kobieta (zwrócona twarzą do dzieciaka). synek co chwile wymachuje nogami i kopie kobietę, matka widząc to nie reaguje na to wogóle. wreszcie kobieta zwraca uwagę matce, żeby ta powiedziała coś synowi a matka do niej: nie mogę, bo wychowuję syna bezstresowo!!! ...chłopak, który stał w pobliżu i widział i słyszał całe to zajście wypluł z ust gumę do żucia i przykleił matce na czoło i powiedział: ja też byłem bezstresowo wychowywany... autentyczny przypadek w londyńskim autobusie (a tym co przykleił matce gumę na czoło był chyba nawet młody Polak)"
"na tylnym siedzeniu w autobusie siedzi matka z 7-8 letnim synkiem. […]"
]
},
"metadata": {},
@ -4455,7 +4471,7 @@
{
"data": {
"text/plain": [
"Krótko zwięźle i na temat. Zastanawia mnie jak ludzie wychowują dzieci. Co prawda sam nie mam potomstwa i nie zamierzam mieć jak narazie (bo to trochę głupie mieć 17-letniego tatusia), ale niestety mam przyjemność oglądać efekty wychowawcze niektórych par (dzięki znajomym rodziców w różnym wieku). Są trzy najbardziej znane mi modele wychowania. Surowe, bezstresowe (w moim znaczeniu) i \"bezstresowe\" w mowie potocznej. Zaczynam od tego pierwszego. Jak nazwa wskazuje, jest to surowe wychowanie, oparte na karach cielesnych lub torturach umysłowych. Nie uważam tego za dobre wychowanie, bo dziecko jak będzie nieco starsze będzie się bało wszystkiego, bo uzna, ż jak zrobi coś żle to spotka je kara. Więc bicie za różne rzeczy odpada (no chyba, że dzieciak na serio nabroi to oczywiście). Wychowanie bezstresowe z mojego słownika oznacza nienarażanie dziecka na stresy, pocieszanie w trudnych sytuacjach, załatwianie problemów przez rozmowę oraz stały kontakt z dzieckiem. I to chyba najlepsze. Sam zostałem tak wychowany i cieszę się z tego powodu. I oczywiście \"wychowanie bezstresowe\". A tu się normalnie rozpiszę. Po pierwsze geneza. Więc jak dochodzi do takiego wychowania? Odpowiedź. Mamusi i tatusiowi się zachciało bobaska bo to takie malutkie fajniutkie i ooo. Oboje zazdroszczą innym parom bo one mają, a oni nie, więc oni też chcą. No więc rodzi im się bobasek, chuchają dmuchają na niego póki małe. Ale przychodzi ten okres, kiedy dziecko trzeba wychować i kiedy ma się na dzieciaka największy wpływ. I tu się zaczynają schody. Nagle oboje nie mają czasu i mówią \"Wychowamy go/ją/ich (niepotrzebne skreślić) bezstresowo.\" Po drugie. Decyzja o sposobie wychowania podjęta. A więc jak to wygląda? Odpowiedź. Totalna olewka! Mama i tata balują, a dzieciaka zostawiają samemu sobie, albo pod opiekę babci, która również leje na dziecko ciepłym moczem. Dzieciak rośnie i rośnie, nie wie co dobre a co złe. Przypomniała mi się pewna, podobno autentyczna scenka. Chłopak jedzie ze szwagrem autobusem czy tam tramwajem. Na jednym miejscu siedzi starowinka, a na przeciwko niej siedzi lafirynda z brzdącem na kolanach. No i sobie dzieciak macha nóżkami i tu ciach i kopnął staruszkę w nogę. Babcia nic sobie z tego nie zrobiła, a dzieciak nie widząc reakcji zaczął ją już celowo kopać. Staruszka: Może pani powiedzieć coś synkowi żeby mnie nie kopał. Matka: Nie bo ja go wychowuję bezstresowo. Szwagier wyciąga z ust gumę do żucia i przykleja mamusi na czoło mówiąc: Moja mama też mnie wychowała bezstresowo. Ciekaw jestem ile w tym prawdy było, a jeżeli 100% to czy mamusi się odmieniły poglądy. Kto go wie? Po trzecie. Dorosły wychowany bezstresowo. Jaki on jest? Odpowiedź. Zupełnie inny. Myśli, że jest pępkiem świata i że wszystko musi być pod jego dyktando. Pracując w Szwajcarii przy pielęgnacji winogron, syn polskiego kolegi taty zaczął rzucać we mnie winogronami. Miałem ochotę wbić mu nożyczki (którymi podcinałem liście) w oczy. A to byłby ciekawy widok. Dzieciak o białych włosach, skórze i niebieskich oczach stałby sie albinosem (bo z niebieskich oczu stałyby sie czerwone jak u białych szczurów i myszek). Ojciec sie co prawda na niego wydzierał, żeby nie przeszkadzał, ale jak widać dzieciak miał to po prostu w dupie. Więc skoro dziecko nie słucha się nawet rodzica, to jak w szkole posłucha nauczyciela? Jak znajdzie pracę, w której będzie jakiś szef (chyba, że sam sobie będzie szefem)? W ten oto sposób jak dowiaduję się o tym, że ktoś wychowuje dzieciaka bezstresowo, ciary przechodzą mi po plecach, a tegoż rodzica mam ochotę palnąć mu w łeb tak żeby się przekręcił (zarówno łeb jak i poglądy). A jak mnie wychowano? Byłem często sam sobie zostawiany. Ale nie oznacza że to byla wspomniana olewka. Jako, że rodzice pracowali, a rodzeństwo chodziło do szkoły, podrzucali mnie do babci. A wieczorami się mną opiekowali. Gadali jak miałem problemy i nie bili bo ponoć byłem spokojnym dzieckiem. No i tyle. Do 17 urodzin 2 dni, a szczura chyba nie dostanę. A sam nie kupię!;("
"Kr\u00f3tko zwi\u0119\u017ale i na temat. Zastanawia mnie jak ludzie wychowuj\u0105 dzieci. […]"
]
},
"metadata": {},
@ -4472,7 +4488,7 @@
"source": [
"##### Z powrotem do wyszukiwarek\n",
"\n",
"Możemy potraktować zapytanie jako bardzo krótki dokument, dokonać jego wektoryzacji i policzyć cosinus kąta między zapytaniem a dokumentem."
"Mo\u017cemy potraktowa\u0107 zapytanie jako bardzo kr\u00f3tki dokument, dokona\u0107 jego wektoryzacji i policzy\u0107 cosinus k\u0105ta mi\u0119dzy zapytaniem a dokumentem."
]
},
{
@ -4483,7 +4499,7 @@
{
"data": {
"text/plain": [
"ja za to znam przypadek, że koleżanka mieszkala w bloku parę lat temu, pewnego razu wchodzi do łazienki w samej bieliźnie a tam ogromny wąż na podłodze i tak się wystraszyła że wybiegła z wrzaskiem z mieszkania i wyleciała przed blok w samej bieliźnie i uciekła do babci swojej, która mieszkala gdzieś niedaleko. a potem się okazało, że jej sąsiad z dołu hodował sobie węża i tak właśnie swobodnie go \"pasał\" po mieszkaniu i wąż mu spierdzielił przez rurę w łazience :cool :"
"ja za to znam przypadek, \u017ce kole\u017canka mieszkala w bloku par\u0119 lat temu, pewnego razu wchodzi do \u0142azienki w samej bieli\u017anie a tam ogromny w\u0105\u017c na pod\u0142odze i tak si\u0119 wystraszy\u0142a \u017ce wybieg\u0142a z wrzaskiem z mieszkania i wylecia\u0142a przed blok w samej bieli\u017anie i uciek\u0142a do babci swojej, kt\u00f3ra mieszkala gdzie\u015b niedaleko. a potem si\u0119 okaza\u0142o, \u017ce jej s\u0105siad z do\u0142u hodowa\u0142 sobie w\u0119\u017ca i tak w\u0142a\u015bnie swobodnie go \"pasa\u0142\" po mieszkaniu i w\u0105\u017c mu spierdzieli\u0142 przez rur\u0119 w \u0142azience :cool :"
]
},
"metadata": {},
@ -4492,7 +4508,7 @@
{
"data": {
"text/plain": [
"Pewna dziewczyna, wieku mi nieznanego, w mieście stołecznym - rozwiodła się. Była sama i samotna, więc zapragnęła kupić sobie zwierzę, aby swą miłą obecnością rozjaśniało jej puste wieczory i takież poranki. Dziewczyna była najwyraźniej ekscentryczką, bo zamiast rozkosznego, miękkiego kociaka z czerwonym kłębuszkiem wełenki lub kudłatego pieska , co sika na parkiet i gryzie skarpetki - kupiła sobie ... węża. Wąż zamieszkał z dziewczyną, i dobrze im było. Gad jadł, spał i rósł, a po pierwszym okresie obojętności ( zwłaszcza ze strony węża ) nawiązała się między nimi nić porozumienia. Przynajmniej dziewczyna odczuwała tę nić wyraźnie, gdyż wąż reagował na jej obecność, a nocą spał zwinięty w kłębek w nogach jej łóżka. Po dwóch latach wspólnego bytowania, nie przerywanych żadnym znaczącym wydarzeniem w ich wzajemnych relacjach, dziewczyna zauważyła, że wąż stał się osowiały. Przestał jeść, chował się po kątach, a nocami, zamiast w nogach łóżka - sypiał wyciągnięty wzdłuż jej boku. Martwiła się o swojego gada i poszła z nim do weterynarza. Weterynarz zbadał go, zapisał leki na poprawę apetytu ( ciekawe, jak się bada węża ? ) i odesłał do domu. Zdrowie śliskiego pacjenta nie poprawiło się, więc troskliwa dziewczyna postanowiła zasięgnąć porady u znawcy gadów i gadzich obyczajów. Znawca wysłuchał opisu niepokojących objawów, i powiedział : - Proszę pani. Ten wąż nie jest chory. On teraz pości. A leży wzdłuż pani nocą, bo sprawdza, czy pani się zmieści. To prawdziwa historia. Opowiedziała nam ją dziś klientka. Leżę na łóżku, pisze tego posta, i patrzę na drzemiącą obok mnie kotkę. Trochę mała jest. Raczej nie ma szans, żebym sie zmieściła, jakby co.."
"Pewna dziewczyna, wieku mi nieznanego, w mie\u015bcie sto\u0142ecznym - rozwiod\u0142a si\u0119. By\u0142a sama i samotna, wi\u0119c zapragn\u0119\u0142a kupi\u0107 sobie zwierz\u0119, […]"
]
},
"metadata": {},
@ -4501,7 +4517,7 @@
{
"data": {
"text/plain": [
"Anakonda. Czy to kolejna miejska legenda? Jakiś czas temu koleżanka na jednej z imprez towarzyskich opowiedziała mrożącą krew w żyłach historię o dziewczynie ze swojej pracy, która w Warszawie na dyskotece w Dekadzie poznała chłopaka. Spotykała się z nim na kawę i po drugiej randce doszło do pocałunków. Umówiła się na trzecią randkę, ale zanim do niej doszło wyskoczył jej jakiś pryszcz na twarzy. Poszła do lekarza, a ten... zawiadomił policję, prokuraturę itd. , bo rozpoznał zarażenie... jadem trupim! Rozpoczęto przesłuchanie dziewczyny i po wyjaśnieniach trafiono do chłopaka, z którym się całowała. W jego domu odkryto rozkładające się zwłoki dwóch dziewczyn. Byłam ta historią wstrząśnięta. Następnego dnia opowiedziałam ją w pracy, a koleżanka Justyna przyznała, że już o tym slyszała. To mnie utwierdziło, że historia jest prawdziwa, ale... tylko do wieczora. Coś mi nie dawało spokoju. Uwaga TVN nic? Interwencja Polsatu - nic? Nasz rodzimy Telekurier nic? Zaczęłam sprawdzać w internecie co to jest jad trupi, opryszczka od zakażenia tymże jadem i tak... trafiłam na miejską legendę. Historia wydarzyła się nie tylko w Warszawie, ale i w Olsztynie, Toruniu, Wrocławiu i Krakowie, a być może w ogóle za granicą. Choć prawdopodobne jest, że nie wydarzyła się nigdy. Głośno o niej było na miejskch forach. Za każdym razem ofiara była czyjąś znajomą. Po przeczytaniu kolejnej wersji historii zadzwoniłam do koleżanki, która opowiedziała mi tę historię i sklęłam czym świat stoi. Dlatego kiedy kilka dni temu inna koleżanka opowiedziała kolejną mrożącą krew w żyłach historię - tym razem o anakondzie - rozpoczęłam poszukiwania w internecie czy to nie jest następna miejska legenda. Nic nie znalazłam. Jednak coś mi nie pasuje, choć ta historia może brzmieć wielce prawdopodobnie. Zwłaszcza, gdy ktoś oglądał głupawy film z J. Lo. Zainteresowało mnie to, bo siedząc nad powieścią \"Dzika\" poczytałam trochę o wężach. A o jaką historię mi chodzi? Pewna kobieta (podobno sąsiadka tej mojej koleżanki z pracy, która historię opowiadała) hodowała w domu węża - anakondę. Hodowała ją pięć lat i nie trzymała w terrarium. Anakonda chodziła (pełzała) samopas po domu i co kilka dni dostawała chomika, szczura, mysz lub królika do zjedzenia. Pewnego dnia przestała jeść i zaczęła się dziwnie zachowywać. Każdego ranka po przebudzeniu właścicielka znajdowała ją w swoim łóżku wyprostowaną jak struna. Po dwóch tygodniach takich zachowań ze strony anakondy właścicielka zaniepokojona stanem zdrowia ukochanego węża poszła z nim do lekarza. Ten wysłuchał objawów \"choroby\" i powiedział, że anakonda głodziła się, by zjeść... włascicielkę. Kładzenie się koło niej było mierzeniem ile jeszcze głodzić się trzeba, by właścicielka zmieściła się w pysku no i badaniem od której strony trzeba ją zaatakować. Wężowi chodziło bowiem o to, by smakowity i duży obiad się za bardzo nie bronił. Ja domyśliłam się od razu do czego zmierza ta historia (lektura artykułów o wężach zrobiła swoje), ale dla reszty, którzy słuchali było to szokiem. Mnie szokuje co innego. Po co trzymać węża skoro nie ma z nim człowiek żadnego kontaktu? To nie pies, kot czy inny ssak. To nie ptak. Wąż to wąż! Nie przyjdzie na zawołanie. Jaby ktoś nie wiedział to... Węże są mięsożerne. Połykają ofiary w całości, mimo że często wielokrotnie są one większe od samego węża. Połykanie polega na nasuwaniu się węża na swoją ofiarę. A anakonda... żyje zwykle w wodzie i na drzewach, żywiąc się ssakami (m.in. tapiry, dziki, kapibary, jelenie!, gryzonie, niekiedy nawet jaguary), gadami (kajmany), rybami i ptakami, polując zazwyczaj w nocy. Jest w stanie połknąć ofiarę znacznie szerszą od swojego ciała, co jest możliwe dzięki rozciągnięciu szczęk. Trawienie jest bardzo powolne - po posiłku wąż trawi większą ofiarę przez wiele dni, a potem może pościć przez szereg tygodni lub miesięcy. Zanotowany rekord postu, w przypadku anakondy znajdującej się w niewoli, wynosi 2 lata. Z historii wynika, że gdyby nie interwencja u weterynarza mogłaby rodzina przez kilka lat szukać właścicielki anakondy. Myśleliby, że jest na wycieczce a ona w brzuszku w postaci obiadku. Jest tylko jedno ale. Nigdzie nie znalazłam jednak śladu, ani nawet wzmianki o tym, że anakonda zjadła człowieka. I dlatego ciągle w sumie mam wątpliwości. ps. Dalszy los anakondy \"sąsiadki\" koleżanki nie jest mi znany."
"Anakonda. Czy to kolejna miejska legenda? Jaki\u015b czas temu kole\u017canka na jednej z imprez towarzyskich opowiedzia\u0142a mro\u017c\u0105c\u0105 krew w \u017cy\u0142ach histori\u0119 o dziewczynie ze swojej pracy, kt\u00f3ra w Warszawie na dyskotece w Dekadzie pozna\u0142a ch\u0142opaka. […]"
]
},
"metadata": {},
@ -4518,7 +4534,7 @@
"query vs vzer q = map ((collectionL !!) . snd) $ Data.List.take 3 $ sortBy (\\a b -> fst b `compare` fst a) $ zip (map (`cosineSim` qvec) vs) [0..] \n",
" where qvec = vzer q \n",
"\n",
"query lVectorized legendVectorizer \"wąż przymierza się do zjedzenia właścicielki\"\n",
"query lVectorized legendVectorizer \"w\u0105\u017c przymierza si\u0119 do zjedzenia w\u0142a\u015bcicielki\"\n",
"\n"
]
},
@ -4543,7 +4559,13 @@
"name": "haskell",
"pygments_lexer": "Haskell",
"version": "8.10.4"
}
},
"author": "Filip Grali\u0144ski",
"email": "filipg@amu.edu.pl",
"lang": "pl",
"subtitle": "3.Wyszukiwarki \u2014 TF-IDF[wyk\u0142ad]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 5. <i>Gęste reprezentacje wektorowe</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -129,7 +143,7 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"Musimy tylko sparametryzować naszą funkcję rozmiarem \"odcisku\" (parametr $b$)."
"Musimy tylko sparametryzować naszą funkcję rozmiarem „odcisku” (parametr $b$)."
]
},
{
@ -1604,11 +1618,14 @@
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Haskell",
"language": "haskell",
"name": "haskell"
},
"lang": "pl",
"language_info": {
"codemirror_mode": "ihaskell",
"file_extension": ".hs",
@ -1616,7 +1633,10 @@
"name": "haskell",
"pygments_lexer": "Haskell",
"version": "8.10.4"
}
},
"subtitle": "5.Gęste reprezentacje wektorowe[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -1,5 +1,19 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 6. <i>Wyzwania uczenia maszynowego</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
@ -367,11 +381,14 @@
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3",
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
@ -382,8 +399,11 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.2"
}
"version": "3.9.6"
},
"subtitle": "6.Wyzwania uczenia maszynowego[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4

View File

@ -0,0 +1,391 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "45264aad",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 7. <i>Naiwny klasyfikator bayesowski w ekstrakcji informacji</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"id": "moderate-array",
"metadata": {},
"source": [
"# Klasyfikacja binarna dla tekstu\n",
"\n",
"Zakładamy, że mamy dwie klasy: $c$ i jej dopełnienie ($\\bar{c}$).\n",
"\n",
"Typowym przykładem jest zadanie klasyfikacji mejla, czy należy do spamu, czy nie (_spam_ vs _ham_), czyli, innymi słowy, filtr antyspamowy."
]
},
{
"cell_type": "markdown",
"id": "correct-victory",
"metadata": {},
"source": [
"**Pytanie**: Czy można wyobrazić sobie zadanie klasyfikacji mejli, niebędące zadaniem klasyfikacji binarnej?"
]
},
{
"cell_type": "markdown",
"id": "spiritual-diploma",
"metadata": {},
"source": [
"Zakładamy paradygmat uczenia nadzorowanego, tzn. dysponujemy zbiorem uczącym.\n",
"\n",
"**Pytanie**: Czym jest i w jaki sposób powstaje zbiór uczący dla filtru antyspamowego?"
]
},
{
"cell_type": "markdown",
"id": "secure-performance",
"metadata": {},
"source": [
"## Klasyfikacja regułowa\n",
"\n",
"Filtr anyspamowe _można_ zrealizować za pomocą metod innych niż opartych na uczeniu maszynowym. Można np. tworzyć reguły (np. wyrażenia regularne). Przykładem są (barokowe...) reguły w programie SpamAssassin, zob. fragment [pliku reguł](https://github.com/apache/spamassassin/blob/trunk/rules/20_advance_fee.cf):\n",
"\n",
"```\n",
"header __FRAUD_VQE\tSubject =~ /^(?:Re:|\\[.{1,10}\\])?\\s*(?:very )?urgent\\s+(?:(?:and|&)\\s+)?(?:confidential|assistance|business|attention|reply|response|help)\\b/i\n",
"\n",
"body __FRAUD_DBI\t/(?:\\bdollars?\\b|\\busd(?:ollars)?(?:[0-9]|\\b)|\\bus\\$|\\$[0-9,.]{6,}|\\$[0-9].{0,8}[mb]illion|\\$[0-9.,]{2,10} ?m|\\beuros?\\b|u[.]?s[.]? [0-9.]+ m)/i\n",
"body __FRAUD_KJV\t/(?:claim|concerning) (?:the|this) money/i\n",
"body __FRAUD_IRJ\t/(?:finance|holding|securit(?:ies|y)) (?:company|firm|storage house)/i\n",
"body __FRAUD_NEB\t/(?:government|bank) of nigeria/i\n",
"body __FRAUD_XJR\t/(?:who was a|as a|an? honest|you being a|to any) foreigner/i\n",
"```\n",
"\n",
"**Pytanie:** Jakie są wady i zalety regułowych filtrów antyspamowych?\n",
"\n",
"Współcześnie zdecydowanie dominuje użycie metod statystycznych (opartych na nadzorowanym uczeniu maszynowym). Do popularności tych metod przyczynił się artykuł [Plan for spam](http://www.paulgraham.com/spam.html) autorstwa Paula Grahama."
]
},
{
"cell_type": "markdown",
"id": "indoor-ending",
"metadata": {},
"source": [
"## Podejście generatywne i dyskryminatywne\n",
"\n",
"W klasyfikacji (i w ogóle w uczeniu nadzorowanym) można wskazać dwa podejścia:\n",
"\n",
"* generatywne — wymyślamy pewną „historyjkę”, w jaki sposób powstaje tekst, „historyjka” powinna mieć miejsca do wypełnienia (parametry), np. częstości wyrazów, na podstawie zbioru uczącego dobieramy wartości parametrów (przez rachunki wprost); „historyjka” nie musi być prawdziwa, wystarczy, że jakoś przybliża rzeczywistość\n",
"\n",
"* dyskryminatywne — nie zastanawiamy się, w jaki sposób powstają teksty, po prostu „na siłę” dobieramy wartości parametrów (wag) modelu, tak aby uzyskać jak najmniejszą wartość funkcji kosztu na zbiorze uczącym; zwykle odbywa się to w iteracyjnym procesie (tak jak przedstawiono na schemacie na poprzednim wykładzie).\n",
"\n",
"**Pytanie**: Jakie są wady i zalety obu podejść?"
]
},
{
"cell_type": "markdown",
"id": "pleased-clinic",
"metadata": {},
"source": [
"## Nasz \"dyżurny\" przykład\n",
"\n",
"Zakładamy, że nasz zbiór uczący ($X$) składa się z 4 dokumentów:\n",
"\n",
"* $x_1=\\mathit{kup\\ pan\\ Viagrę}$\n",
"* $x_2=\\mathit{tanie\\ miejsce\\ dla\\ pana}$\n",
"* $x_3=\\mathit{viagra\\ viagra\\ viagra}$\n",
"* $x_4=\\mathit{kup\\ tanie\\ cartridge'e}$\n",
"\n",
"z następującymi etykietami:\n",
"\n",
"* $y_1=c$ (spam)\n",
"* $y_2=\\bar{c}$ (nie-spam)\n",
"* $y_3=c$\n",
"* $y_4=c$\n",
"\n",
"Zakładamy, że dokumenty podlegają lematyzacji i sprowadzeniu do mały liter, więc ostatecznie będziemy mieli następujące ciąg termów:\n",
"\n",
"* $x_1=(\\mathit{kupić}, \\mathit{pan}, \\mathit{viagra})$\n",
"* $x_2=(\\mathit{tani}, \\mathit{miejsce}, \\mathit{dla}, \\mathit{pan})$\n",
"* $x_3=(\\mathit{viagra}, \\mathit{viagra}, \\mathit{viagra})$\n",
"* $x_4=(\\mathit{kupić}, \\mathit{tani}, \\mathit{cartridge})$\n",
"\n",
"$P(tani|c) = (1+1)/(9+7) = 2/16 = 0.125$\n",
"$P(viagra|c) = \\frac{4+1}{9 + 7} = 5/16 = 0.3125 $\n",
"$P(dla|c) = \\frac{0+1}{9+7} = 1/16 = 0.0625$\n",
"$P(pan|c) = (1+1)/(9+7) = 2/16 = 0.125 $\n",
"$P(c) = 0.75$\n",
"\n",
"w wersji wielomianowej: $P(c)P(tani|c)P(tani|c)P(viagra|c)P(dla|c)P(pan|c) = 0.75 * 0.125 * 0.125 * 0.3125 * 0.0625 * 0.125= 0.0002861$\n",
"\n",
"w werjis Bernoulliego: $P(c)P(U_{dla}=1|c)P(U_{cartridge}=0|c)P(U_{viagra}=1|c)P(U_{pan}=1|c)P(U_{tani}=1|c)P(U_{miejsce}=0|c)P(U_{kup}=0|c)$\n",
"\n",
"$P(tani|\\bar{c}) = (1+1)/(4+7) = 2/11 =0.182 $\n",
"$P(viagra|\\bar{c}) = 1/11 = 0.091 $\n",
"$P(dla|\\bar{c}) = 2/11 = 0.182 $\n",
"$P(pan|\\bar{c}) = 2/11 = 0.182 $\n",
"$P(\\bar{c}) = 0.25$\n",
"\n",
"$P(\\bar{c})P(tani|\\bar{c})P(tani|\\bar{c})P(dla|\\bar{c})P(pan|\\bar{c}) = 0.25 * 0.182 * 0.182 * 0.091 * 0.182 * 0.182 = 0.00002496$\n",
"\n",
"\n",
"\n",
"Uczymy na tym zbiorze klasyfikator, który będziemy testować na dokumencie $d=\\mathit{tania\\ tania\\ viagra\\ dla\\ pana}$, tj. po normalizacji\n",
"$d=(\\mathit{tani}, \\mathit{tani}, \\mathit{viagra}, \\mathit{dla}, \\mathit{pan})$.\n",
"\n",
"**Uwaga:** Przykład jest oczywiście nierealistyczny i trudno będzie nam ocenić sensowność odpowiedzi. Za to będziemy w stanie policzyć ręcznie wynik.\n"
]
},
{
"cell_type": "markdown",
"id": "partial-military",
"metadata": {},
"source": [
"## Naiwny klasyfikator bayesowski\n",
"\n",
"* _naiwny_— niekoniecznie oznacza, że to „głupi”, bezużyteczny klasyfikator\n",
"* _klasyfikator_ \n",
"* _bayesowski_ — będzie odwoływać się do wzoru Bayesa.\n",
"\n",
"Naiwny klasyfikator bayesowski raczej nie powinien być stosowany „produkcyjnie” (są lepsze metody). Natomiast jest to metoda bardzo prosta w implementacji dająca przyzwoity _baseline_.\n",
"\n",
"Naiwny klasyfikator bayesowski ma dwie odmiany:\n",
"\n",
"* wielomianową,\n",
"* Bernoulliego.\n",
"\n",
"Wielomianowy naiwny klasyfikator bayesowski jest częściej spotykany i od niego zaczniemy."
]
},
{
"cell_type": "markdown",
"id": "colonial-creature",
"metadata": {},
"source": [
"Mamy dokument $d$ i dwie klasy $c$ i $\\bar{c}$. Policzymy prawdopodobieństwa $P(c|d)$ (mamy dokument $d$, jakie jest prawdopodobieństwo, że to klasa $c$) i $P(\\bar{c}|d)$. A właściwie będziemy te prawdopodobieństwa porównywać.\n",
"\n",
"**Uwaga**: nasz zapis to skrót notacyjny, właściwie powinniśmy podać zmienne losowe $P(C=c|D=d)$, ale zazwyczaj będziemy je pomijać. \n",
"\n",
"**Pytanie**: kiedy ostatecznie nasz klasyfikator zwróci informację, że klasa $c$, a kiedy że $\\bar{c}$? czy użytkownika interesują prawdopodobieństwa $P(c|d)$ i $P(\\bar{c}|d)$?"
]
},
{
"cell_type": "markdown",
"id": "governing-fiction",
"metadata": {},
"source": [
"Zastosujmy najpierw wzór Bayesa.\n",
"\n",
"$P(c|d) = \\frac{P(d|c) P(c)}{P(d)}$"
]
},
{
"cell_type": "markdown",
"id": "northern-spine",
"metadata": {},
"source": [
"$P(\\bar{c}|d) = \\frac{P(d|\\bar{c}) P(\\bar{c})}{P(d)}$"
]
},
{
"cell_type": "markdown",
"id": "utility-induction",
"metadata": {},
"source": [
"(Oczywiście skądinąd $P(\\bar{c}|d) = 1 - P(c|d)$, ale nie będziemy teraz tego wykorzystywali.)"
]
},
{
"cell_type": "markdown",
"id": "timely-force",
"metadata": {},
"source": [
"Co możemy pominąć, jeśli tylko porównujemy $P(c|d)$ i $P(\\bar{c}|d)$?\n",
"\n",
"Użyjmy znaku proporcjonalności $\\propto$:\n",
"\n",
"$P(c|d) = \\frac{P(d|c) P(c)}{P(d)} \\propto P(d|c) P(c)$\n",
"\n",
"$P(\\bar{c}|d) = \\frac{P(d|\\bar{c}) P(\\bar{c})}{P(d)} \\propto P(d|\\bar{c}) P(\\bar{c})$\n",
"\n",
"**Pytanie:** czy iloczyn $P(d|c)P(c)$ można interpretować jako prawdopodobieństwo?"
]
},
{
"cell_type": "markdown",
"id": "embedded-involvement",
"metadata": {},
"source": [
"#### Prawdopodobieństwo _a priori_\n",
"\n",
"$P(c)$ — prawdopodobieństwo a priori klasy $c$\n",
"\n",
"$\\hat{P}(c) = \\frac{N_c}{N}$\n",
"\n",
"gdzie\n",
"\n",
"* N — liczba wszystkich dokumentów w zbiorze uczącym\n",
"* N_c — liczba dokumentow w zbiorze uczącym z klasą $c$\n",
"\n",
"$\\hat{P}(c) = 0,75$\n",
"\n",
"$\\hat{P}(\\bar{c}) = 0,25$\n"
]
},
{
"cell_type": "markdown",
"id": "virgin-premiere",
"metadata": {},
"source": [
"#### Prawdopodobieństwo _a posteriori_\n",
"\n",
"Jak interpretować $P(d|c)$?\n",
"\n",
"Wymyślmy sobie model generatywny, $P(d|c)$ będzie prawdopodobieństwem, że spamer (jeśli $c$ to spam) wygeneruje tekst.\n",
"\n",
"Załóżmy, że dokument $d$ to ciąg $n$ termów, $d = (t_1\\dots t_n)$. Na razie niewiele z tego wynika."
]
},
{
"cell_type": "markdown",
"id": "acting-zimbabwe",
"metadata": {},
"source": [
"$P(d|c) = P(t_1\\dots t_n|c)$\n",
"\n",
"Aby pójść dalej, musimy doszczegółowić nasz model generatywny. Przyjmijmy bardzo naiwny i niezgodny z rzeczywistością model spamera (i nie-spamera): spamer wyciąga wyrazy z worka i wrzuca je z powrotem (losowanie ze zwracaniem). Jedyne co odróżnia spamera i nie-spamera, to **prawdopodobieństwo wylosowania wyrazu** (np. spamer wylosuje słowo _Viagra_ z dość dużym prawdopodobieństwem, nie-spamer — z bardzo niskim).\n",
"\n",
"**Pytanie:** Ile może wynosić $P(\\mathit{Viagra}|c)$?\n",
"\n",
"Po przyjęciu takich „naiwnych założeń”:\n",
"\n",
"$$P(d|c) = P(t_1\\dots t_n|c) \\approx P(t_1|c)\\dots P(t_n|c) = \\prod_i^n P(t_i|c)$$"
]
},
{
"cell_type": "markdown",
"id": "adjustable-disney",
"metadata": {},
"source": [
"Jak oszacować $\\hat{P}(t|c)$?\n",
"\n",
"$$\\hat{P}(t|c) = \\frac{\\#(t,c)}{\\sum_i^{|V|} \\#(t_i,c)} = \\frac{\\mathit{ile\\ razy\\ term\\ t\\ pojawił\\ się\\ w\\ dokumentach\\ klasy\\ c}}{liczba\\ wyrazów\\ w\\ klasie\\ c}$$"
]
},
{
"cell_type": "markdown",
"id": "associate-variance",
"metadata": {},
"source": [
"### Wygładzanie\n",
"\n",
"Mamy problem z zerowymi prawdopodobieństwami.\n",
"\n",
"Czy jeśli w naszym zbiorze uczącym spamerzy ani razu nie użyli słowa _wykładzina_, to $P(\\mathit{wykładzina}|c) = 0$?.\n",
"\n",
"Musimy zastosować wygładzanie (_smoothing_). Spróbujmy wymyślić wygładzanie wychodząc od zdroworozsądkowych aksjomatów.\n",
"\n",
"#### Aksjomaty wygładzania.\n",
"\n",
"Założmy, że mamy dyskretną przestrzeń probabilistyczną $\\Omega = \\{\\omega_1,\\dots,\\omega_m\\}$, zdarzenie $\\omega_i$ w naszym zbiorze uczącym wystąpiło $k_i$ razy. Wprost prawdopodobieństwa byśmy oszacowali tak: $P(\\omega_i) = \\frac{k_i}{\\sum_j^m k_j}$.\n",
"Szukamy zamiast tego funkcji wygładzającej $f(m, k, T)$ (innej niż $f(m, k, T) = \\frac{k}{T}$), która spełniałaby następujące aksjomaty:\n",
"\n",
"1. $f(m, k, T) \\in [0, 1]$\n",
"2. $f(m, k, T) \\in (0, 1)$ jeśli $m > 1$\n",
"3. $\\sum_i f(m, k_i, T) = 1$, jeśli $\\sum_i k_i = T$\n",
"4. $f(m, 0, 0) = \\frac{1}{m}$\n",
"5. $\\lim_{T \\to \\inf} f(m, k, T) = \\frac{k}{T}$\n",
"\n",
"\n",
"m=2, k1=2, k2=4, T=6, 2/6 => f(2, 2, 6) > 0.333, f(2, 4, 6) < 0.666 \n",
"\n",
"Jaka funkcja spełnia te aksjomaty?\n",
"\n",
"$$f(m, k, T) = \\frac{k+1}{T+m}$$\n",
"\n",
"Jest to wygładzanie +1, inaczej wygładzanie Laplace'a.\n",
"\n",
"**Pytanie:** Wymyślić jakiś inny przykład funkcji, która będzie spełniała aksjomaty.\n",
"\n",
"\n",
"\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "complimentary-airplane",
"metadata": {},
"source": [
"Po zastosowaniu do naszego naiwnego klasyfikatora otrzymamy:\n",
" \n",
"$$\\hat{P}(t|c) = \\frac{\\#(t,c) + 1}{\\sum_i^{|V|} \\#(t_i,c) + |V|}$$"
]
},
{
"cell_type": "markdown",
"id": "comprehensive-junior",
"metadata": {},
"source": [
"### Metoda Bernoulliego"
]
},
{
"cell_type": "markdown",
"id": "vocational-spanish",
"metadata": {},
"source": [
"$$P(𝑑|𝑐) \\approx P(U=u_1|c)\\dots P(U=u_{|v|})$$, gdzie $u_i = 1$, $t_i$ pojawił się w dokumencie $d$, 0 - w przeciwnym razie\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "enabling-manitoba",
"metadata": {},
"source": [
"$\\hat{P}(U_{viagra}=1|c) = \\frac{\\#(viagra,N_c) + 1}{N_c + 2}$"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bearing-execution",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"subtitle": "7.Naiwny klasyfikator bayesowski w ekstrakcji informacji[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 5
}

View File

@ -0,0 +1,326 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "35c19016",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 8. <i>Regresja liniowa</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"id": "cathedral-newark",
"metadata": {},
"source": [
"# Regresja liniowa\n",
"\n",
"Regresja liniowa jest prosta...\n",
"\n",
"![Ceny mieszkań](./08_files/linregr1.png)\n",
"\n",
"... dosłownie — dopasuj prostą $y = ax + b$ do punktów\n",
"\n",
"Należy odgadnąć $a$ i $b$ tak, aby zminimalizować błąd\n",
"kwadratowy, tj. wartość:\n",
"\n",
"$$\\sum_{i=1}^n (y_i - (ax_i + b))^2$$\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "heard-clinton",
"metadata": {},
"source": [
"Regresje liniowa (jednej zmiennej) jest łatwa do rozwiązania — wystarczy podstawić do wzoru!\n",
"\n",
"$$\\hat{b} = \\frac{ \\sum_{i=1}^{n}{x_i y_i} - \\frac{1}{n} \\sum_{i=1}^n x_i\n",
" \\sum_{j=1}^n y_j}{ \\sum_{i=1}^n {x_i^2} - \\frac{1}{n} (\\sum_{i=1}^n\n",
" x_i)^2 }$$\n",
"\n",
"$$\\hat{a} = \\bar{y} - \\hat{b}\\,\\bar{x}$$\n",
"\n",
"\n",
"Na przykład dla mieszkań: $b =$ -30809.203 zł, $a =$ 5733.693 zł/m$^2$.\n",
"\n",
"![Ceny mieszkań](./08_files/linregr2.png)\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "preceding-impression",
"metadata": {},
"source": [
"## Regresja wielu zmiennych\n",
"\n",
"W praktyce mamy do czynienia z **wielowymiarową** regresją\n",
"liniową.\n",
"\n",
"Cena mieszkań może być prognozowana na podstawie:\n",
"\n",
"* powierzchni w m$^2$ ($x_1 = 32.3$) $w_1 = 7000$\n",
"\n",
"* liczby pokoi ($x_2 = 3$) $w_2 = -30000$\n",
" \n",
"* nr piętra ($x_3 = 4$) \n",
"\n",
"* wieku ($x_4 = 13$) $w_3 = -1000$\n",
"\n",
"* odległości od Dworca Centralnego w Warszawie ($x_5 = 371.3$)\n",
"\n",
"* wielkość miasta\n",
"\n",
"* gęstość zaludnienia\n",
"\n",
"* cech zerojedynkowych:\n",
"\n",
" * czy wielka płyta? ($x_6 = 0$)\n",
"\n",
" * czy jest jacuzzi? ($x_7 = 1$) $w_7 = 5000$\n",
"\n",
" * czy jest grzyb? ($x_8 = 0$) $w_8 = -40000$\n",
" \n",
" * czy to Kielce? ($x_9 = 1$)\n",
" \n",
" * czy to Kraków ($x_{10} = 0$)\n",
" \n",
" * czy to Katowice ($x_{11} = 0$)\n",
" \n",
" * czy obok budynku jest parking \n",
" \n",
" * czy w budynku jest parking\n",
"\n",
"* zakodowany opis \n",
"\n",
" * $(x_{12}, x_{|V|+12})$ - wektor tf-idf \n",
"\n",
"... więc uogólniamy na wiele ($k$) wymiarów:\n",
"\n",
"$$ y = w_0 + w_1x_1 + \\ldots + w_kx_k = w_0 + \\sum_{j=1}^{k} w_jx_j = w_0 + \\vec{w}\\vec{x}$$\n",
"\n",
"gdzie:\n",
"\n",
"* $x_1,\\dots,x_k$ -- zmienne, na podstawie których zgadujemy\n",
"\n",
"* $w_0, w_1,\\dots,w_k$ -- wagi modelu (do wymyślenia na\n",
" podstawie przykładów)\n",
"\n",
"* $y$ -- odgadywana wartość\n",
"\n",
"Też istnieje wzór ładny wzór na wyliczenie wektora wag!\n",
"\n",
"$$\\mathbf{w} = (\\mathbf{X}^{\\rm T}\\mathbf{X})^{-1} \\mathbf{X}^{\\rm T}\\mathbf{y}$$\n",
"\n",
"... niestety odwracanie macierzy nie jest tanie :("
]
},
{
"cell_type": "markdown",
"id": "confused-increase",
"metadata": {},
"source": [
"## Kilka spostrzeżeń\n",
"\n",
"Regresja liniowa to najprostszy możliwy model:\n",
"\n",
"* im czegoś więcej na wejściu, tym proporcjonalnie (troszkę) więcej/mniej na wyjściu\n",
"\n",
"* nic prostszego nie da się wymyślić (funkcja stała??)\n",
"\n",
"* niestety model liniowy czasami kompletnie nie ma sensu (np. wzrost człowieka w\n",
" stosunku do wieku)\n"
]
},
{
"cell_type": "markdown",
"id": "freelance-controversy",
"metadata": {
"jp-MarkdownHeadingCollapsed": true,
"tags": []
},
"source": [
"## Uczenie\n",
"\n",
"A jak nauczyć się wag z przykładów?\n",
"\n",
"* wzór (z odwracaniem macierzy) — problematyczny\n",
"\n",
"### Metoda gradientu prostego\n",
"\n",
"![Morskie oko; Autor:Krzysztof Dudzik; Źródło: [https://pl.wikipedia.org/wiki/Morskie_Oko#/media/Plik:Morskie_Oko_ze_szlaku_przez_%C5%9Awist%C3%B3wk%C4%99.jpg](https://pl.wikipedia.org/wiki/Morskie_Oko#/media/Plik:Morskie_Oko_ze_szlaku_przez_%C5%9Awist%C3%B3wk%C4%99.jpg); Licencja: CC-BY 3.0](08_files/morskieoko.jpg)\n",
"\n",
"Schodź wzdłuż lokalnego spadku funkcji błędu.\n",
"\n",
"Tak więc w praktyce zamiast podstawiać do wzoru lepiej się uczyć iteracyjnie —\n",
" metodą **gradientu prostego** (ang. _gradient descent_).\n",
"\n",
"1. Zacznij od byle jakich wag $w_i$ (np. wylosuj)\n",
"2. Weź losowy przykład uczący $x_1,\\dots,x_n$, $y$.\n",
"3. Oblicz wyjście $\\hat{y}$ na podstawie $x_1,\\dots,x_n$.\n",
"4. Oblicz funkcję błędu między $y$ a $\\hat{y}$.\n",
"5. Zmodyfikuj lekko wagi $(w_i)$ w kierunku spadku funkcji błędu.\n",
"6. Jeśli błąd jest duży, idź do 2.\n",
"\n",
"Modyfikacja wag:\n",
"\n",
"$$w_i := w_i - x_i (\\hat{y} - y) \\eta$$\n",
"\n",
"gdzie $\\eta$ to **współczynnik uczenia** _learning rate_.\n"
]
},
{
"cell_type": "markdown",
"id": "divine-medium",
"metadata": {},
"source": [
"## Ewaluacja regresji\n",
"\n",
"To miary błędu (im mniej, tym lepiej!)}\n",
"\n",
"### Błąd bezwzględny (Mean Absolute Error, MAE)\n",
"\n",
"$$\\frac{1}{n}\\sum_{i=1}^n |\\hat{y}_i - y_i| $$\n",
"\n",
"### Mean Squared Error (MSE)\n",
"\n",
"$$\\frac{1}{n}\\sum_{i=1}^n (\\hat{y}_i - y_i)^2$$\n",
"\n",
"### Root Mean Squared Error (RMSE)\n",
"\n",
"$$\\sqrt{\\frac{1}{n}\\sum_{i=1}^n (\\hat{y}_i - y_i)^2}$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "supreme-tennessee",
"metadata": {},
"source": [
"## Regresja liniowa dla tekstu\n",
"\n",
"Czym jest wektor $\\vec{x} = (x_1,\\dots,x_n)$? Wiemy, np. reprezentacja tf-idf (być z trikiem z haszowaniem, Word2vec etc.).\n",
"\n",
"![Schemat regresji liniowej tekstu](08_files/regresja-liniowa-tekst.png)\n"
]
},
{
"cell_type": "markdown",
"id": "seasonal-syndication",
"metadata": {},
"source": [
"### Przykład \n",
"\n",
"Wyzwanie RetroC2 - odgadywanie roku dla krótkiego tekstu (1814-2013), <https://gonito.net/challenge/retroc2>.\n",
" \n",
"Lista słów (obcięta do 7 znaków) z największą/najmniejszymi wagami. \n",
"\n",
"```\n",
"wzbudze -0.08071490\n",
"paczka -0.08000180\n",
"szarpi -0.05906200\n",
"spadoch -0.05784140\n",
"rzymsko -0.05466660\n",
"sosnowy -0.05162170\n",
"dębowyc -0.04778910\n",
"nawinię -0.04649400\n",
"odmówie -0.04522140\n",
"zacisko -0.04480620\n",
"funkcją -0.04479500\n",
"werben -0.04423350\n",
"nieumyś -0.04415200\n",
"wodomie -0.04351570\n",
"szczote -0.04313390\n",
"exekucy -0.04297940\n",
"listew -0.04214090\n",
"daley -0.04145400\n",
"metro -0.04080110\n",
"wyjąwsz -0.04078060\n",
"salda -0.04042050\n",
"tkach -0.04020180\n",
"cetnar -0.03999050\n",
"zgóry -0.03855980\n",
"belek -0.03833100\n",
"formier -0.03805890\n",
"wekslu -0.03796510\n",
"odmową -0.03753760\n",
"\n",
"odwadni 0.04662140\n",
"dozując 0.04672770\n",
"wyników 0.04744650\n",
"sprawst 0.04746330\n",
"jakub 0.04750710\n",
"ścieran 0.04791070\n",
"wrodzon 0.04799800\n",
"koryguj 0.04843560\n",
"odnotow 0.04854360\n",
"tłumiąc 0.04917320\n",
"leasing 0.04963200\n",
"ecznej 0.04994810\n",
"2013r 0.05009500\n",
"kompens 0.05049060\n",
"comarch 0.05058620\n",
"pojazde 0.05078540\n",
"badanyc 0.05340480\n",
"kontakc 0.05377990\n",
"sygnali 0.05601120\n",
"piasta 0.05658670\n",
"2000r 0.05716820\n",
"stropni 0.06123470\n",
"oszone 0.06124600\n",
"zamonto 0.06424310\n",
"……….. 0.06498500\n",
"kumulat 0.06596770\n",
"faktura 0.07313080\n",
"wielost 0.09677770\n",
"wielomi 0.12307300\n",
"```\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "encouraging-martial",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"subtitle": "8.Regresja liniowa[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 5
}

BIN
wyk/08_files/linregr1.pdf Normal file

Binary file not shown.

BIN
wyk/08_files/linregr1.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 101 KiB

8
wyk/08_files/linregr1.r Normal file
View File

@ -0,0 +1,8 @@
library(ggplot2)
prices = read.csv("mieszkania.tsv", sep="\t", header=TRUE)
prices$area = prices$powierzchnia
prices$price = prices$cena
pdf("linregr1.pdf")
ggplot(prices, aes(x=area, y=price)) + geom_point()
dev.off()

BIN
wyk/08_files/linregr2.pdf Normal file

Binary file not shown.

BIN
wyk/08_files/linregr2.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 125 KiB

8
wyk/08_files/linregr2.r Normal file
View File

@ -0,0 +1,8 @@
library(ggplot2)
prices = read.csv("mieszkania.tsv", sep="\t", header=TRUE)
prices$area = prices$powierzchnia
prices$price = prices$cena
pdf("linregr2.pdf")
ggplot(prices, aes(x=area, y=price)) + geom_point() + stat_smooth(method=lm, se=FALSE)
dev.off()

121
wyk/08_files/mieszkania.tsv Normal file
View File

@ -0,0 +1,121 @@
powierzchnia cena
53 215000
60.01 219990
54 285000
60 330000
63 212000
39 219000
76.11 399000
48 119000
42.19 260000
53.41 323000
65.65 555000
65 185000
55 247000
100 280000
56 224000
39 230000
42.3 179000
49.65 305000
68 345000
37 145000
103 529000
62.3 209000
17.65 42000
45 500000
36.15 140000
45 159000
50 130000
48 84000
36 359000
39.3 116400
49.48 136950
26 85000
72 469000
64 239000
55 435000
90 175903
90 175903
90 175903
127.88 1710000
59 649000
48.7 240000
73 259000
32.9 275000
64 170000
44.72 174408
68 275000
38 323000
35 110000
63 165000
25 69000
50 290000
76.312 572325
65 429000
52.5 499000
58 145000
34 95000
46 280000
38 120000
52 269000
47 105000
63 266000
67.79 275000
60 550000
107 1230000
53 228000
48.65 148000
39 140000
23 170000
35 195000
71.19 245000
75 329000
53 185000
51 135000
42 133000
38 142000
45.6 470000
50 194000
29 158999
28.8 199000
36 199000
57.43 385621
57.71 402305
60.12 395000
38 210000
56.28 419000
60 346800
41 295000
28.7 219000
39 275000
37 105000
47 330000
64 435000
96 151200
35.34 87000
101 489000
50 129000
49.5 315000
14 2000
31 110000
50.9 265000
117 129000
52.2 250000
28 140000
15 5000
41.7 249000
56.4 490000
30.9 161000
42.3 229000
53 270000
72.4 409000
52.9 370000
37.77 135000
82 260000
32 195000
59 590000
62.01 205000
52.5 543000
56 170000
67.61 285000
51 494000
1 powierzchnia cena
2 53 215000
3 60.01 219990
4 54 285000
5 60 330000
6 63 212000
7 39 219000
8 76.11 399000
9 48 119000
10 42.19 260000
11 53.41 323000
12 65.65 555000
13 65 185000
14 55 247000
15 100 280000
16 56 224000
17 39 230000
18 42.3 179000
19 49.65 305000
20 68 345000
21 37 145000
22 103 529000
23 62.3 209000
24 17.65 42000
25 45 500000
26 36.15 140000
27 45 159000
28 50 130000
29 48 84000
30 36 359000
31 39.3 116400
32 49.48 136950
33 26 85000
34 72 469000
35 64 239000
36 55 435000
37 90 175903
38 90 175903
39 90 175903
40 127.88 1710000
41 59 649000
42 48.7 240000
43 73 259000
44 32.9 275000
45 64 170000
46 44.72 174408
47 68 275000
48 38 323000
49 35 110000
50 63 165000
51 25 69000
52 50 290000
53 76.312 572325
54 65 429000
55 52.5 499000
56 58 145000
57 34 95000
58 46 280000
59 38 120000
60 52 269000
61 47 105000
62 63 266000
63 67.79 275000
64 60 550000
65 107 1230000
66 53 228000
67 48.65 148000
68 39 140000
69 23 170000
70 35 195000
71 71.19 245000
72 75 329000
73 53 185000
74 51 135000
75 42 133000
76 38 142000
77 45.6 470000
78 50 194000
79 29 158999
80 28.8 199000
81 36 199000
82 57.43 385621
83 57.71 402305
84 60.12 395000
85 38 210000
86 56.28 419000
87 60 346800
88 41 295000
89 28.7 219000
90 39 275000
91 37 105000
92 47 330000
93 64 435000
94 96 151200
95 35.34 87000
96 101 489000
97 50 129000
98 49.5 315000
99 14 2000
100 31 110000
101 50.9 265000
102 117 129000
103 52.2 250000
104 28 140000
105 15 5000
106 41.7 249000
107 56.4 490000
108 30.9 161000
109 42.3 229000
110 53 270000
111 72.4 409000
112 52.9 370000
113 37.77 135000
114 82 260000
115 32 195000
116 59 590000
117 62.01 205000
118 52.5 543000
119 56 170000
120 67.61 285000
121 51 494000

BIN
wyk/08_files/morskieoko.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 291 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 61 KiB

2048
wyk/09_neurozoo.ipynb Normal file

File diff suppressed because one or more lines are too long

1057
wyk/09_neurozoo.org Normal file

File diff suppressed because it is too large Load Diff

543
wyk/11_rnn.ipynb Normal file
View File

@ -0,0 +1,543 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 11. <i>Sieci rekurencyjne</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rekurencyjne sieci neuronowe\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Inne spojrzenie na sieci przedstawione do tej pory\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Regresja liniowa/logistyczna lub klasyfikacja wieloklasowa na całym tekście\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"W regresji liniowej czy logistycznej bądź w klasyfikacji wieloklasowej\n",
"(z funkcją Softmax) stosowaliśmy następujący schemat:\n",
"\n",
"Do tej pory patrzyliśmy na to tak, że po prostu cały tekst jest od\n",
"razu przetwarzany przez (prostą) sieć neuronową, popatrzmy na ten\n",
"przypadek, jak na sytuację przetwarzania sekwencyjnego. Będzie to\n",
"trochę sztuczne, ale uogólnimy to potem w sensowny sposób.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Wektoryzacja\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Po pierwsze, zauważmy, że w wielu schematach wektoryzacji (np. tf), wektor\n",
"dokumentów jest po prostu sumą wektorów poszczególnych składowych:\n",
"\n",
"$$\\vec{v}(d) = \\vec{v}(t^1,\\ldots,t^K) = \\vec{v}(t^1) + \\ldots + \\vec{v}(t^K) = \\sum_{k=1}^K \\vec{v}(t^i),$$\n",
"\n",
"gdzie w schemacie tf \\vec{v}(t<sup>i</sup>) to po prostu wektor *one-hot* dla słowa.\n",
"\n",
"**Pytanie** Jak postać przyjmie w \\vec{v}(t<sup>i</sup>) dla wektoryzacji tf-idf?\n",
"\n",
"Wektory $\\vec{v}(t^k)$ mogą być również gęstymi wektorami\n",
"($\\vec{v}(t^k) \\in \\mathcal{R}^n$, gdzie $n$ jest rzędu 10-1000), np.\n",
"w modelu Word2vec albo mogą to być **wyuczalne** wektory (zanurzenia\n",
"słów, *embeddings*), tzn. wektory, które są parametrami uczonej sieci!\n",
"\n",
"**Pytanie** Ile wag (parametrów) wnoszą wyuczalne wektory do sieci?\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Prosta wektoryzacja wyrażona w modelu sekwencyjnym\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jak zapisać równoważnie powyższą wektoryzację w modelu **sekwencyjnym**, tj. przy założeniu, że\n",
"przetwarzamy wejście token po tokenie (a nie „naraz”)? Ogólnie wprowadzimy bardzo\n",
"ogólny model sieci **rekurencyjnej**.\n",
"\n",
"Po pierwsze zakładamy, że sieć ma pewien stan $\\vec{s^k} \\in\n",
"\\mathcal{R}^m$ (stan jest wektorem o długości $m$), który może\n",
"zmieniać się z każdym krokiem (przetwarzanym tokenem). Zmiana stanu\n",
"jest określona przez pewną funkcję $R : \\mathcal{R}^m \\times\n",
"\\mathcal{R}^n \\rightarrow \\mathcal{R}^m$ ($n$ to rozmiar wektorów\n",
"$\\vec{v}(t^k)$):\n",
"\n",
"$$\\vec{s^k} = R(\\vec{s^{k-1}}, \\vec{v}(t^k)).$$\n",
"\n",
"W przypadku wektoryzacji tf-idf mamy do czynienia z prostym\n",
"sumowaniem, więc $R$ przyjmuje bardzo prostą postać:\n",
"\n",
"$$\\vec{s^0} = [0,\\dots,0],$$\n",
"\n",
"$$R(\\vec{s}, \\vec{x}) = \\vec{s} + \\vec{x}.$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Wyjście z modelu\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Dla regresji liniowej/logistycznej, oprócz funkcji $R$, która określa\n",
"zmianę stanu, potrzebujemy funkcji $O$, która określa wyjście systemu w każdym kroku.\n",
"\n",
"$$y^k = O(\\vec{s^k})$$\n",
"\n",
"W zadaniach klasyfikacji czy regresji, kiedy patrzymy na cały tekst w\n",
"zasadzie wystarczy wziąć *ostatnią* wartość (tj. $y^K$). Można sobie\n",
"wyobrazić sytuację, kiedy wartości $y^k$ dla $k < k$ również mogą być jakoś przydatne\n",
"(np. klasyfikujemy na bieżąco tekst wpisywany przez użytkownika).\n",
"\n",
"W każdym razie dla regresji liniowej funkcja $O$ przyjmie postać:\n",
"\n",
"$$O(\\vec{s}) = \\vec{w}\\vec{s}$$,\n",
"\n",
"gdzie $\\vec{w}$ jest wektorem wyuczylnych wag, dla regresji zaś logistycznej:\n",
"\n",
"$$O(\\vec{s}) = \\operatorname{softmax}(\\vec{w}\\vec{s})$$\n",
"\n",
"**Pytanie**: jaką postać przyjmie $O$ dla klasyfikacji wieloklasowej\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Prosta sieć rekurencyjna\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"W najprostszej sieci rekurencyjnej (*Vanilla RNN*, sieć Elmana,\n",
"czasami po prostu RNN) w każdym kroku oprócz właściwego wejścia\n",
"($\\vec{v}(t^k)$) będziemy również podawać na wejściu poprzedni stan\n",
"sieci ($\\vec{s^{k-1}}$).\n",
"\n",
"Innymi słowy, funkcje $R$ przyjmie następującą postać:\n",
"\n",
"$$s^k = \\sigma(W\\langle\\vec{v}(t^k), \\vec{s^{k-1}}\\rangle + \\vec{b}),$$\n",
"\n",
"gdzie:\n",
"\n",
"- $\\langle\\vec{x},\\vec{y}\\rangle$ to konkatenacja dwóch wektorów,\n",
"- $W \\in \\mathcal{R}^m \\times \\mathcal{R}^{n+m}$ — macierz wag,\n",
"- $b \\in \\mathcal{R}^m$ — wektor obciążeń (*biases*).\n",
"\n",
"Taką sieć RNN można przedstawić schematycznie w następujący sposób:\n",
"\n",
"![Pojedynczy krok sieci rekurencyjnej](./img-rnn.png)\n",
"\n",
"Zauważmy, że zamiast macierzy $W$ działającej na konkatenacji wektorów można wprowadzić dwie\n",
"macierze $U$ i $V$ i tak zapisać wzór:\n",
"\n",
"$$s^k = \\sigma(U\\vec{v}(t^k) + V\\vec{s^{k-1}} + \\vec{b}).$$\n",
"\n",
"Jeszcze inne spojrzenie na sieć RNN:\n",
"\n",
"![Pojedynczy krok sieci rekurencyjnej II](./rnn.png)\n",
"\n",
"Powyższy rysunek przedstawia pojedynczy krok sieci RNN. Dla całego\n",
"wejścia (powiedzmy, 3-wyrazowego) możemy sieć rozwinąć (*unroll*):\n",
"\n",
"![Rozwinięta sieć rekurencyjna](./rnn-seq.png)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Zastosowanie sieci RNN do etykietowania sekwencji\n",
"\n",
"Sieć RNN może w prosty sposób być użyta do etykietowania sekwencji (w każdym kroku zwracamy etykietę)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Problemy z prostymi sieciami RNN\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"W praktyce proste sieci RNN są bardzo trudne w uczenia, zazwyczaj\n",
"pojawia się problem **zanikających** (rzadziej: **eksplodujących**)\n",
"gradientów: w propagacji wstecznej błąd szybko zanika i nie jest w\n",
"stanie dotrzeć do początkowych wejść.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Sieci RNN z bramkami\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"W prostych sieciach RNN podstawowa trudność polega na tym, że mamy\n",
"niewielką kontrolę nad tym jak pamięć (stan) jest aktualizowana. Aby\n",
"zwiększyć tę kontrolę, potrzebujemy **bramek**.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Bramki\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Zazwyczaj do tej pory rozpatrywaliśmy iloczyn skalarny wektorów, w\n",
"wyniku którego otrzymujemy liczbę (w PyTorchu wyrażany za pomocą operatora `@`), np.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Out[2]:\n",
"tensor(-5)"
]
}
],
"source": [
"import torch\n",
"\n",
"a = torch.tensor([-1, 0, 3])\n",
"b = torch.tensor([2, 5, -1])\n",
"a @ b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Czasami przydatny jest **iloczyn Hadamarda**, czyli przemnożenie\n",
"wektorów (albo macierzy) po współrzędnych. W PyTorchu taki iloczyn\n",
"wyrażany jest za pomocą operatora `*`, w notacji matematycznej będziemy używali\n",
"znaku $\\odot$.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Out[3]:\n",
"tensor([-2, 0, -3])"
]
}
],
"source": [
"import torch\n",
"\n",
"a = torch.tensor([-1, 0, 3])\n",
"b = torch.tensor([2, 5, -1])\n",
"a * b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Zauważmy, że iloczyn Hadamarda przez wektor złożony z zer i jedynek daje nam *filtr*, możemy\n",
"selektywnie wygaszać pozycje wektora, np. tutaj wyzerowaliśmy 2. i 5. pozycję wektora:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Out[4]:\n",
"tensor([1., 0., 3., 4., 0.])"
]
}
],
"source": [
"import torch\n",
"\n",
"a = torch.tensor([1., 2., 3., 4., 5.])\n",
"b = torch.tensor([1., 0., 1., 1., 0.])\n",
"a * b"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Co więcej, za pomocą bramki możemy selektywnie kontrolować, co\n",
"zapamiętujemy, a co zapominamy. Rozpatrzmy mianowicie wektor zer i\n",
"jedynek $\\vec{g} \\in \\{0,1\\}^m$, dla stanu (pamięci) $\\vec{s}$ i nowej informacji\n",
"$\\vec{x}$ możemy dokonywać aktualizacji w następujący sposób:\n",
"\n",
"$$\\vec{s} \\leftarrow \\vec{g} \\odot \\vec{x} + (1 - \\vec{g}) \\odot \\vec{s}$$\n",
"\n",
"Na przykład, za pomocą bramki można wpisać nową wartość na 2. i 5. pozycję wektora.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Out[8]:\n",
"tensor([ 1., 7., 3., 4., -8.])"
]
}
],
"source": [
"import torch\n",
"\n",
"s = torch.tensor([1., 2., 3., 4., 5.])\n",
"x = torch.tensor([8., 7., 15., -3., -8.])\n",
"\n",
"g = torch.tensor([0., 1., 0., 0., 1.])\n",
"\n",
"s = g * x + (1 - g) * s\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wektor bramki nie musi być z góry określony, może być wyuczalny. Wtedy\n",
"jednak lepiej założyć, że bramka jest „miękka”, np. jej wartości\n",
"pochodzi z sigmoidy zastosowanej do jakiejś wcześniejszej warstwy.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"# Out[14]:\n",
"tensor([ 1.5310, 6.9998, 5.7777, 4.0000, -5.2159])"
]
}
],
"source": [
"import torch\n",
"\n",
"s = torch.tensor([1., 2., 3., 4., 5.])\n",
"x = torch.tensor([8., 7., 15., -3., -8.])\n",
"\n",
"pre_g = torch.tensor([-2.5, 10.0, -1.2, -101., 1.3])\n",
"g = torch.sigmoid(pre_g)\n",
"\n",
"s = g * x + (1 - g) * s\n",
"s"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"**Pytanie:** dlaczego sigmoida zamiast tanh?\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Sieć LSTM\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Architektura LSTM (*Long Short-Term Memory*) pozwala rozwiązać problem\n",
"znikających gradientów — za cenę komplikacji obliczeń.\n",
"\n",
"W sieci LSTM stan $\\vec{s^k}$ ma dwie połówki, tj. $\\vec{s^k} =\n",
"\\langle\\vec{c^k},\\vec{h^k}\\rangle$, gdzie\n",
"\n",
"- $\\vec{c^k}$ to **komórka pamięci**, która nie zmienia swojej, chyba że celowo zmodyfikujemy jej wartość\n",
" za pomocą bramek,\n",
"- $\\vec{h^k}$ to ukryty stan (przypominający $\\vec{s^k}$ ze zwykłej sieci RNN).\n",
"\n",
"Sieć LSTM zawiera 3 bramki:\n",
"\n",
"- bramkę zapominania (*forget gate*), która steruje wymazywaniem informacji z komórki\n",
" pamięci $\\vec{c^k}$,\n",
"- bramkę wejścia (*input gate*), która steruje tym, na ile nowe informacje aktualizują\n",
" komórkę pamięci $\\vec{c^k}$,\n",
"- bramkę wyjścia (*output gate*), która steruje tym, co z komórki\n",
" pamięci przekazywane jest na wyjście.\n",
"\n",
"Wszystkie trzy bramki definiowane są za pomocą bardzo podobnego wzoru — warstwy liniowej na\n",
"poprzedniej wartości warstwy ukrytej i bieżącego wejścia.\n",
"\n",
"$$\\vec{i} = \\sigma(W_i\\langle\\vec{v}(t^k),\\vec{h^{k-1}}\\rangle)$$\n",
"\n",
"$$\\vec{f} = \\sigma(W_f\\langle\\vec{v}(t^k),\\vec{h^{k-1}}\\rangle)$$\n",
"\n",
"$$\\vec{o} = \\sigma(W_o\\langle\\vec{v}(t^k),\\vec{h^{k-1}}\\rangle)$$\n",
"\n",
"Jak widać, wzory różnią się tylko macierzami wag $W_*$.\n",
"\n",
"Zmiana komórki pamięci jest zdefiniowana jak następuje:\n",
"\n",
"$$\\vec{c^k} = \\vec{f} \\odot \\vec{c^{k-1}} + \\vec{i} \\vec{z^k}$$,\n",
"\n",
"gdzie\n",
"\n",
"$$\\vec{z^k} = \\operatorname{tanh}(W_z\\langle\\vec{v}(t^k),\\vec{h^{k-1}}\\rangle)$$\n",
"\n",
"Stan ukryty zmienia się w następujący sposób:\n",
"\n",
"$$\\vec{h^K} = \\vec{o} \\odot \\operatorname{tanh}(\\vec{c^k})$$.\n",
"\n",
"Ostateczne wyjście może być wyliczane na podstawie wektora $\\vec{h^k}$:\n",
"\n",
"$$O(\\vec{s}) = O(\\langle\\vec{c},\\vec{h}\\rangle) = \\vec{h}$$\n",
"\n",
"**Pytanie**: Ile wag/parametrów ma sieć RNN o rozmiarze wejścia $n$ i rozmiarze warstwy ukrytej $m$?\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Literatura\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Yoav Goldberg, *Neural Network Methods for Natural Language Processing*,\n",
"Morgan & Claypool Publishers, 2017\n",
"\n"
]
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"org": null,
"subtitle": "11.Sieci rekurencyjne[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

288
wyk/11_rnn.org Normal file
View File

@ -0,0 +1,288 @@
* Rekurencyjne sieci neuronowe
** Inne spojrzenie na sieci przedstawione do tej pory
*** Regresja liniowa/logistyczna lub klasyfikacja wieloklasowa na całym tekście
W regresji liniowej czy logistycznej bądź w klasyfikacji wieloklasowej
(z funkcją Softmax) stosowaliśmy następujący schemat:
Do tej pory patrzyliśmy na to tak, że po prostu cały tekst jest od
razu przetwarzany przez (prostą) sieć neuronową, popatrzmy na ten
przypadek, jak na sytuację przetwarzania sekwencyjnego. Będzie to
trochę sztuczne, ale uogólnimy to potem w sensowny sposób.
**** Wektoryzacja
Po pierwsze, zauważmy, że w wielu schematach wektoryzacji (np. tf), wektor
dokumentów jest po prostu sumą wektorów poszczególnych składowych:
$$\vec{v}(d) = \vec{v}(t^1,\ldots,t^K) = \vec{v}(t^1) + \ldots + \vec{v}(t^K) = \sum_{k=1}^K \vec{v}(t^i),$$
gdzie w schemacie tf \vec{v}(t^i) to po prostu wektor /one-hot/ dla słowa.
*Pytanie* Jak postać przyjmie w \vec{v}(t^i) dla wektoryzacji tf-idf?
Wektory $\vec{v}(t^k)$ mogą być również gęstymi wektorami
($\vec{v}(t^k) \in \mathcal{R}^n$, gdzie $n$ jest rzędu 10-1000), np.
w modelu Word2vec albo mogą to być *wyuczalne* wektory (zanurzenia
słów, /embeddings/), tzn. wektory, które są parametrami uczonej sieci!
*Pytanie* Ile wag (parametrów) wnoszą wyuczalne wektory do sieci?
**** Prosta wektoryzacja wyrażona w modelu sekwencyjnym
Jak zapisać równoważnie powyższą wektoryzację w modelu *sekwencyjnym*, tj. przy założeniu, że
przetwarzamy wejście token po tokenie (a nie „naraz”)? Ogólnie wprowadzimy bardzo
ogólny model sieci *rekurencyjnej*.
Po pierwsze zakładamy, że sieć ma pewien stan $\vec{s^k} \in
\mathcal{R}^m$ (stan jest wektorem o długości $m$), który może
zmieniać się z każdym krokiem (przetwarzanym tokenem). Zmiana stanu
jest określona przez pewną funkcję $R : \mathcal{R}^m \times
\mathcal{R}^n \rightarrow \mathcal{R}^m$ ($n$ to rozmiar wektorów
$\vec{v}(t^k)$):
$$\vec{s^k} = R(\vec{s^{k-1}}, \vec{v}(t^k)).$$
W przypadku wektoryzacji tf-idf mamy do czynienia z prostym
sumowaniem, więc $R$ przyjmuje bardzo prostą postać:
$$\vec{s^0} = [0,\dots,0],$$
$$R(\vec{s}, \vec{x}) = \vec{s} + \vec{x}.$$
**** Wyjście z modelu
Dla regresji liniowej/logistycznej, oprócz funkcji $R$, która określa
zmianę stanu, potrzebujemy funkcji $O$, która określa wyjście systemu w każdym kroku.
$$y^k = O(\vec{s^k})$$
W zadaniach klasyfikacji czy regresji, kiedy patrzymy na cały tekst w
zasadzie wystarczy wziąć /ostatnią/ wartość (tj. $y^K$). Można sobie
wyobrazić sytuację, kiedy wartości $y^k$ dla $k < k$ również mogą być jakoś przydatne
(np. klasyfikujemy na bieżąco tekst wpisywany przez użytkownika).
W każdym razie dla regresji liniowej funkcja $O$ przyjmie postać:
$$O(\vec{s}) = \vec{w}\vec{s}$$,
gdzie $\vec{w}$ jest wektorem wyuczylnych wag, dla regresji zaś logistycznej:
$$O(\vec{s}) = \operatorname{softmax}(\vec{w}\vec{s})$$
*Pytanie*: jaką postać przyjmie $O$ dla klasyfikacji wieloklasowej
** Prosta sieć rekurencyjna
W najprostszej sieci rekurencyjnej (/Vanilla RNN/, sieć Elmana,
czasami po prostu RNN) w każdym kroku oprócz właściwego wejścia
($\vec{v}(t^k)$) będziemy również podawać na wejściu poprzedni stan
sieci ($\vec{s^{k-1}}$).
Innymi słowy, funkcje $R$ przyjmie następującą postać:
$$s^k = \sigma(W\langle\vec{v}(t^k), \vec{s^{k-1}}\rangle + \vec{b}),$$
gdzie:
- $\langle\vec{x},\vec{y}\rangle$ to konkatenacja dwóch wektorów,
- $W \in \mathcal{R}^m \times \mathcal{R}^{n+m}$ — macierz wag,
- $b \in \mathcal{R}^m$ — wektor obciążeń (/biases/).
Taką sieć RNN można przedstawić schematycznie w następujący sposób:
[[./img-rnn.png]]
Zauważmy, że zamiast macierzy $W$ działającej na konkatenacji wektorów można wprowadzić dwie
macierze $U$ i $V$ i tak zapisać wzór:
$$s^k = \sigma(U\vec{v}(t^k) + V\vec{s^{k-1}} + \vec{b}).$$
Jeszcze inne spojrzenie na sieć RNN:
[[./rnn.png]]
Powyższy rysunek przedstawia pojedynczy krok sieci RNN. Dla całego
wejścia (powiedzmy, 3-wyrazowego) możemy sieć rozwinąć (/unroll/):
[[./rnn-seq.png]]
*** Zastosowanie sieci RNN do etykietowania sekwencji
*** Problemy z prostymi sieciami RNN
W praktyce proste sieci RNN są bardzo trudne w uczenia, zazwyczaj
pojawia się problem *zanikających* (rzadziej: *eksplodujących*)
gradientów: w propagacji wstecznej błąd szybko zanika i nie jest w
stanie dotrzeć do początkowych wejść.
** Sieci RNN z bramkami
W prostych sieciach RNN podstawowa trudność polega na tym, że mamy
niewielką kontrolę nad tym jak pamięć (stan) jest aktualizowana. Aby
zwiększyć tę kontrolę, potrzebujemy *bramek*.
*** Bramki
Zazwyczaj do tej pory rozpatrywaliśmy iloczyn skalarny wektorów, w
wyniku którego otrzymujemy liczbę (w PyTorchu wyrażany za pomocą operatora ~@~), np.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
a = torch.tensor([-1, 0, 3])
b = torch.tensor([2, 5, -1])
a @ b
#+END_SRC
#+RESULTS:
:results:
# Out[2]:
: tensor(-5)
:end:
Czasami przydatny jest *iloczyn Hadamarda*, czyli przemnożenie
wektorów (albo macierzy) po współrzędnych. W PyTorchu taki iloczyn
wyrażany jest za pomocą operatora ~*~, w notacji matematycznej będziemy używali
znaku $\odot$.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
a = torch.tensor([-1, 0, 3])
b = torch.tensor([2, 5, -1])
a * b
#+END_SRC
#+RESULTS:
:results:
# Out[3]:
: tensor([-2, 0, -3])
:end:
Zauważmy, że iloczyn Hadamarda przez wektor złożony z zer i jedynek daje nam /filtr/, możemy
selektywnie wygaszać pozycje wektora, np. tutaj wyzerowaliśmy 2. i 5. pozycję wektora:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
a = torch.tensor([1., 2., 3., 4., 5.])
b = torch.tensor([1., 0., 1., 1., 0.])
a * b
#+END_SRC
#+RESULTS:
:results:
# Out[4]:
: tensor([1., 0., 3., 4., 0.])
:end:
Co więcej, za pomocą bramki możemy selektywnie kontrolować, co
zapamiętujemy, a co zapominamy. Rozpatrzmy mianowicie wektor zer i
jedynek $\vec{g} \in \{0,1\}^m$, dla stanu (pamięci) $\vec{s}$ i nowej informacji
$\vec{x}$ możemy dokonywać aktualizacji w następujący sposób:
$$\vec{s} \leftarrow \vec{g} \odot \vec{x} + (1 - \vec{g}) \odot \vec{s}$$
Na przykład, za pomocą bramki można wpisać nową wartość na 2. i 5. pozycję wektora.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
s = torch.tensor([1., 2., 3., 4., 5.])
x = torch.tensor([8., 7., 15., -3., -8.])
g = torch.tensor([0., 1., 0., 0., 1.])
s = g * x + (1 - g) * s
s
#+END_SRC
#+RESULTS:
:results:
# Out[8]:
: tensor([ 1., 7., 3., 4., -8.])
:end:
Wektor bramki nie musi być z góry określony, może być wyuczalny. Wtedy
jednak lepiej założyć, że bramka jest „miękka”, np. jej wartości
pochodzi z sigmoidy zastosowanej do jakiejś wcześniejszej warstwy.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
s = torch.tensor([1., 2., 3., 4., 5.])
x = torch.tensor([8., 7., 15., -3., -8.])
pre_g = torch.tensor([-2.5, 10.0, -1.2, -101., 1.3])
g = torch.sigmoid(pre_g)
s = g * x + (1 - g) * s
s
#+END_SRC
#+RESULTS:
:results:
# Out[14]:
: tensor([ 1.5310, 6.9998, 5.7777, 4.0000, -5.2159])
:end:
*Pytanie:* dlaczego sigmoida zamiast tanh?
*** Sieć LSTM
Architektura LSTM (/Long Short-Term Memory/) pozwala rozwiązać problem
znikających gradientów — za cenę komplikacji obliczeń.
W sieci LSTM stan $\vec{s^k}$ ma dwie połówki, tj. $\vec{s^k} =
\langle\vec{c^k},\vec{h^k}\rangle$, gdzie
- $\vec{c^k}$ to *komórka pamięci*, która nie zmienia swojej, chyba że celowo zmodyfikujemy jej wartość
za pomocą bramek,
- $\vec{h^k}$ to ukryty stan (przypominający $\vec{s^k}$ ze zwykłej sieci RNN).
Sieć LSTM zawiera 3 bramki:
- bramkę zapominania (/forget gate/), która steruje wymazywaniem informacji z komórki
pamięci $\vec{c^k}$,
- bramkę wejścia (/input gate/), która steruje tym, na ile nowe informacje aktualizują
komórkę pamięci $\vec{c^k}$,
- bramkę wyjścia (/output gate/), która steruje tym, co z komórki
pamięci przekazywane jest na wyjście.
Wszystkie trzy bramki definiowane są za pomocą bardzo podobnego wzoru — warstwy liniowej na
poprzedniej wartości warstwy ukrytej i bieżącego wejścia.
$$\vec{i} = \sigma(W_i\langle\vec{v}(t^k),\vec{h^{k-1}}\rangle)$$
$$\vec{f} = \sigma(W_f\langle\vec{v}(t^k),\vec{h^{k-1}}\rangle)$$
$$\vec{o} = \sigma(W_o\langle\vec{v}(t^k),\vec{h^{k-1}}\rangle)$$
Jak widać, wzory różnią się tylko macierzami wag $W_*$.
Zmiana komórki pamięci jest zdefiniowana jak następuje:
$$\vec{c^k} = \vec{f} \odot \vec{c^{k-1}} + \vec{i} \vec{z^k}$$,
gdzie
$$\vec{z^k} = \operatorname{tanh}(W_z\langle\vec{v}(t^k),\vec{h^{k-1}}\rangle)$$
Stan ukryty zmienia się w następujący sposób:
$$\vec{h^K} = \vec{o} \odot \operatorname{tanh}(\vec{c^k})$$.
Ostateczne wyjście może być wyliczane na podstawie wektora $\vec{h^k}$:
$$O(\vec{s}) = O(\langle\vec{c},\vec{h}\rangle) = \vec{h}$$
*Pytanie*: Ile wag/parametrów ma sieć RNN o rozmiarze wejścia $n$ i rozmiarze warstwy ukrytej $m$?
** Literatura
Yoav Goldberg, /Neural Network Methods for Natural Language Processing/,
Morgan & Claypool Publishers, 2017

859
wyk/12_bpe.ipynb Normal file

File diff suppressed because one or more lines are too long

396
wyk/12_bpe.org Normal file
View File

@ -0,0 +1,396 @@
* Podział na jednostki podwyrazowe
** Słownik nie może być za duży…
Jeśli używamy wyuczalnych zanurzeń słów (embeddingów), wówczas musimy
je dopisać do listy parametrów całego modelu — jest to $|V|n$ wag,
gdzie $n$ to rozmiar embeddingów; w wypadku uczenia dodatkowo musimy
jeszcze pamiętać związane z embeddingami gradienty. Pamięć RAM karty
graficznej jest rzecz jasna ograniczona, słownik więc nie może być
dowolnie duży. Dla danego modelu karty graficznej dość łatwo ustalić
maksymalny rozmiar słownika — jest „twarde” ograniczenie, które musimy
spełnić.
*** Czy rzeczywiście słownik może być taki duży?
Ile jest różnych form fleksyjnych w języku polskim? Zobaczmy w słowniku PoliMorf…
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! wget -q 'http://zil.ipipan.waw.pl/PoliMorf?action=AttachFile&do=get&target=PoliMorf-0.6.7.tab.gz' -O - | zcat | cut -f 1 | uniq | head -n 20
#+END_SRC
#+RESULTS:
:results:
# Out[2]:
:end:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! wget -q 'http://zil.ipipan.waw.pl/PoliMorf?action=AttachFile&do=get&target=PoliMorf-0.6.7.tab.gz' -O - | zcat | cut -f 1 | sort -u | wc -l
#+END_SRC
#+RESULTS:
:results:
# Out[3]:
:end:
*Pytanie* W którym języku europejskim wyrazów będzie jeszcze więcej niż języku polskim?
Tak naprawdę form jest jeszcze więcej, oczywiście PoliMorf nie wyczerpuje zbioru…
*Pytanie* Podaj przykłady „oczywistych” wyrazów, których nie ma w PoliMorfie. Jak w sposób systematyczny szukać takich wyrazów?
Z drugiej strony, w PoliMorfie jest dużo dziwnych, „sztucznych” wyrazów.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! wget -q 'http://zil.ipipan.waw.pl/PoliMorf?action=AttachFile&do=get&target=PoliMorf-0.6.7.tab.gz' -O - | zcat | cut -f 1 | shuf -n 20
#+END_SRC
#+RESULTS:
:results:
# Out[4]:
:end:
Inaczej, zobaczmy, ile różnych wyrazów jest w jakimś rzeczywistym zbiorze tekstów, rozpatrzmy
teksty zebrane na potrzeby identyfikacji płci autora tekstu:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! git clone --single-branch --depth 1 git://gonito.net/petite-difference-challenge2
#+END_SRC
#+RESULTS:
:results:
# Out[7]:
:end:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! xzcat petite-difference-challenge2/train/in.tsv.xz | perl -C -ne 'print "$&\n" while/\p{L}+/g;' | sort -u > vocab.txt
#+END_SRC
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! head -n 50 vocab.txt
#+END_SRC
#+RESULTS:
:results:
# Out[11]:
:end:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! wc -l vocab.txt
#+END_SRC
#+RESULTS:
:results:
# Out[9]:
:end:
Co gorsza, nawet jak weźmiemy cały taki słownik bez ograniczeń i tak
nie pokryje on sporej części tekstów przetwarzanych w czasie inferencji.
Zobaczmy, ilu wyrazów ze zbioru deweloperskiego nie będzie w słowniku.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! cat petite-difference-challenge2/dev-0/in.tsv | perl -C -ne 'print "$&\n" while/\p{L}+/g;' | sort -u | comm vocab.txt - -13 | wc -l
#+END_SRC
Takie wyrazy nazywamy wyrazami *OOV* (/out-of-vocabulary/).
** Obcięcie słownika
Najprostszy sposób ograniczenia słownika to po prostu obcięcie do $N$ najczęstszych słów.
Spróbujmy zastosować do korpusu „płci”:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! xzcat petite-difference-challenge2/train/in.tsv.xz | perl -C -ne 'print "$&\n" while/\p{L}+/g;' | sort | uniq -c | sort -k 1rn | head -n 50000 | sort -k 2 > vocab50000.txt
#+END_SRC
#+RESULTS:
:results:
# Out[8]:
:end:
Daje to lepszy efekt niż można się spodziewać. Odrzucamy w ten sposób
tylko bardzo rzadkie słowa (albo takie, które wystąpiły tylko raz w
korpusie — tzw. /hapax legomena/), choć tych słów jest bardzo dużo.
*Zagadka*: 50000 najczęstszych słów (1,9% *typów*) pokrywa jaki odsetek *wystąpień*?
Rozkład normalny w języku nie jest… normalny — nie spotkamy się z nim
badając języki. W tekstach dominują „skrzywione” rozkłady z długimi,
„chudymi” ogonami.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! xzcat petite-difference-challenge2/train/in.tsv.xz | perl -C -ne 'print "$&\n" while/\p{L}+/g;' | sort | uniq -c | sort -k 1rn | cut -f 1 > freqs.txt
#+END_SRC
#+BEGIN_SRC ipython :session mysession :results file
%matplotlib inline
import matplotlib.pyplot as plt
import re
from math import log
freqs = []
with open('freqs.txt', 'r') as fh:
for line in fh:
m = re.match(r'\s*(\d+)', line)
if m:
freqs.append(int(m.group(1)))
plt.plot(range(len(freqs)), freqs)
fname = 'word-distribution.png'
plt.savefig(fname)
fname
#+END_SRC
#+RESULTS:
[[file:# Out[25]:
: 'word-distribution.png'
[[file:./obipy-resources/c0TrCn.png]]]]
** Lematyzacja
Lematyzacja wydaje się dobrym pomysłem, zwłaszcza dla języków dla bogatej fleksji:
- znacznie redukujemy słownik,
- formy fleksyjne tego samego wyrazu są traktowane tak samo (co wydaje się słuszne).
W praktyce współcześnie *nie* stosuje się lematyzacji (w połączeniu z
metodami opartymi na sieciach neuronowych):
- lematyzacja wymaga wiedzy językowej (reguł lub słownika),
wytworzenie takiej wiedzy może być kosztowne, obecnie preferowane
są metody niezależne od języka;
- tracimy pewną informację niesioną przez formę fleksyjną (co w szczególnych
przypadkach może być niefortunne, np. /aspiracja/ i /aspiracje/);
- lematyzacja nie jest trywialnym problemem ze względu na niejednoznaczności
(/Lekarzu, lecz się sam/);
- niektóre niejednoznaczności są seryjne, wybór lematu może być arbitralny,
np. czy /posiadanie/, /gotowanie/, /skakanie/ to rzeczowniki czy czasowniki?
a /urządzenie/, /mieszkanie/?
- zazwyczaj sieci neuronowe (czy nawet prostsze modele typu Word2vec)
są w stanie nauczyć się rekonstruowania zależności między formami fleksyjnymi
(i więcej: błędnych form, błędów ortograficznych, form archaicznych itd.)
** Zejście na poziom znaków
Skoro słownik wyrazów jest zbyt duży, to może zejść na poziom znaków?
- pojedynczy znak alfabetu wprawdzie nic nie znaczy (co znaczy /h/?)
- … ale rozmiar wejścia przy kodowaniu gorącą jedynką
dramatycznie się zmniejsza
- może działać, jeśli dodać wielowarstwową sieć
neuronową
- … ale może być bardzo kosztowne obliczeniowo
A może coś pośredniego między znakami a wyrazami?
** BPE
Ani znaki, ani wyrazy — coś pomiędzy: jednostki podwyrazowe (/subword
units/). Moglibyśmy np. dzielić wyraz /superkomputera/ na dwie
jednostki /super/+/komputera/, a może nawet trzy: /super/+/komputer/+/a/?
Najpopularniejszy algorytm podziału na jednostki podwyrazowe to BPE
(/byte-pair encoding/), zainspirowany algorytmami kompresji danych.
Lista jednostek jest automatycznie indukowana na podstawie tekstu (nie
potrzeba żadnej wiedzy o języku!). Ich liczba musi być natomiast z góry
określona.
W kroku początkowym zaznaczamy końce wyrazów (tokenów), robimy to po
to, żeby jednostki podwyrazowe nie przekraczały granic wyrazów.
Następnie wykonujemy tyle kroków iteracji, ile wynosi rozmiar zadanego
słownika. W każdym kroku szukamy najczęstszego bigramu, od tego
momentu traktujemy go jako całostkę (wkładamy go do „pudełka”).
[[./bpe.png]]
*** Implementacja w Pythonie
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
from collections import Counter
def replace_bigram(l, b, r):
i = 0
while i < len(l) - 1:
if (l[i], l[i+1]) == b:
l[i:i+2] = [r]
i += 1
return l
def learn_bpe_vocab(d, max_vocab_size):
d = list(d.replace(' ', '$') + '$')
vocab = []
for ix in range(0, max_vocab_size):
bigrams = [(d[i], d[i+1]) for i in range(0, len(d) - 1) if d[i][-1] != '$']
selected_bigram = Counter(bigrams).most_common(1)[0][0]
new_subword = selected_bigram[0] + selected_bigram[1]
d = replace_bigram(d, selected_bigram, new_subword)
vocab.append(new_subword)
return vocab
vocab1 = learn_bpe_vocab('to be or not to be that is the question', 10)
vocab1
#+END_SRC
#+RESULTS:
:results:
# Out[1]:
: ['e$', 'to', 'to$', 'be$', 't$', 'th', 'or', 'or$', 'no', 'not$']
:end:
Słownik jednostek podwyrazowych możemy zastosować do dowolnego tekstu, np. do tekstu,
na którym słownik był wyuczony:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
def apply_bpe_vocab(vocab, d):
d = list(d.replace(' ', '$') + '$')
vocab_set = set(vocab)
modified = True
while modified:
ix = 0
modified = False
while ix < len(d) - 1:
bigram = d[ix] + d[ix+1]
if bigram in vocab_set:
d[ix:ix+2] = [bigram]
modified = True
else:
ix += 1
return d
' '.join(apply_bpe_vocab(vocab1, 'to be or not to be that is the question'))
#+END_SRC
#+RESULTS:
:results:
# Out[5]:
: 'to$ be$ or$ not$ to$ be$ th a t$ i s $ th e$ q u e s t i o n $'
:end:
Zauważmy, że oprócz jednostek podwyrazowych zostały izolowane litery,
zazwyczaj dodajemy je do słownika. (I zazwyczaj, słownik jest trochę
większy niż wartość podana jako parametr przy uczeniu BPE — jest
większy o znaki i specjalne tokeny typu ~UNK~, ~BOS~, ~EOS~, ~PAD~.)
*Pytanie*: Jaki problem może pojawić przy zastosowaniu BPE dla tekstu,
gdzie pojawiają się chińskie znaki? Jak można sobie z nim poradzić?
Słownik jednostek podwyrazowych można stosować dla dowolnego tekstu:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
' '.join(apply_bpe_vocab(vocab1, 'tom will be the best'))
#+END_SRC
#+RESULTS:
:results:
# Out[6]:
: 'to m $ w i l l $ be$ th e$ b e s t$'
:end:
Jak można zauważyć algorytm BPE daje dwa rodzaje jednostek podwyrazowych:
- jednostki, które mogą doklejane na początku wyrazu;
- jednostki, które stanowią koniec wyrazu, w szczególności są całym wyrazem.
*** Gotowa implementacja
Po raz pierwszy BPE użyto do neuronowego tłumaczenia maszynowego.
Użyjmy modułu autorstwa Rica Sennricha (https://github.com/rsennrich/subword-nmt).
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! pip install subword-nmt
#+END_SRC
Wyindukujmy słownik dla zbioru uczącego zadania identyfikacji płci
autora tekstu:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! xzcat petite-difference-challenge2/train/in.tsv.xz | perl -C -ne 'print "$&\n" while/\p{L}+/g;' | python -m subword_nmt.learn_bpe -s 50000 -v > bpe_vocab.txt
#+END_SRC
Procedura trwa kilka minut, trzeba uzbroić się w cierpliwość (ale wypisywanie bigramów przyspieszy!).
#+BEGIN_SRC
pair 0: n i -> ni (frequency 17625075)
pair 1: i e -> ie (frequency 11471590)
pair 2: c z -> cz (frequency 9143490)
pair 3: ni e</w> -> nie</w> (frequency 7901783)
pair 4: p o -> po (frequency 7790826)
pair 5: r z -> rz (frequency 7542046)
pair 6: s t -> st (frequency 7269069)
pair 7: e m</w> -> em</w> (frequency 7207280)
pair 8: d z -> dz (frequency 6860931)
pair 9: s z -> sz (frequency 6609907)
pair 10: r a -> ra (frequency 6601618)
pair 11: o w -> ow (frequency 6395963)
pair 12: i e</w> -> ie</w> (frequency 5906869)
pair 13: n a -> na (frequency 5300380)
pair 14: r o -> ro (frequency 5181363)
pair 15: n a</w> -> na</w> (frequency 5125807)
pair 16: a ł -> ał (frequency 4786696)
pair 17: j e -> je (frequency 4599579)
pair 18: s i -> si (frequency 4300984)
pair 19: a l -> al (frequency 4276823)
pair 20: t e -> te (frequency 4033344)
pair 21: w i -> wi (frequency 3939063)
pair 22: c h</w> -> ch</w> (frequency 3919410)
pair 23: c h -> ch (frequency 3661410)
pair 24: k o -> ko (frequency 3629840)
pair 25: z a -> za (frequency 3625424)
pair 26: t a -> ta (frequency 3570094)
pair 27: p rz -> prz (frequency 3494551)
pair 28: g o</w> -> go</w> (frequency 3279997)
pair 29: a r -> ar (frequency 3081492)
pair 30: si ę</w> -> się</w> (frequency 2973681)
...
pair 49970: brz mieniu</w> -> brzmieniu</w> (frequency 483)
pair 49971: bieżą cych</w> -> bieżących</w> (frequency 483)
pair 49972: biegu nkę</w> -> biegunkę</w> (frequency 483)
pair 49973: ban kowości</w> -> bankowości</w> (frequency 483)
pair 49974: ba ku</w> -> baku</w> (frequency 483)
pair 49975: ba cznie</w> -> bacznie</w> (frequency 483)
pair 49976: Przypad kowo</w> -> Przypadkowo</w> (frequency 483)
pair 49977: MA Ł -> MAŁ (frequency 483)
pair 49978: Lep pera</w> -> Leppera</w> (frequency 483)
pair 49979: Ko za -> Koza (frequency 483)
pair 49980: Jak byś</w> -> Jakbyś</w> (frequency 483)
pair 49981: Geni alne</w> -> Genialne</w> (frequency 483)
pair 49982: Że nada</w> -> Żenada</w> (frequency 482)
pair 49983: ń czykiem</w> -> ńczykiem</w> (frequency 482)
pair 49984: zwie ń -> zwień (frequency 482)
pair 49985: zost ałaś</w> -> zostałaś</w> (frequency 482)
pair 49986: zni szczona</w> -> zniszczona</w> (frequency 482)
pair 49987: ze stawi -> zestawi (frequency 482)
pair 49988: za sób</w> -> zasób</w> (frequency 482)
pair 49989: węd rówkę</w> -> wędrówkę</w> (frequency 482)
pair 49990: wysko czyła</w> -> wyskoczyła</w> (frequency 482)
pair 49991: wyle czenia</w> -> wyleczenia</w> (frequency 482)
pair 49992: wychowaw cze</w> -> wychowawcze</w> (frequency 482)
pair 49993: w t -> wt (frequency 482)
pair 49994: un da -> unda (frequency 482)
pair 49995: udzie lałem</w> -> udzielałem</w> (frequency 482)
pair 49996: tę czy</w> -> tęczy</w> (frequency 482)
pair 49997: tro sce</w> -> trosce</w> (frequency 482)
pair 49998: słusz ności</w> -> słuszności</w> (frequency 482)
pair 49999: su me</w> -> sume</w> (frequency 482
#+END_SRC
Zastosujmy teraz wyindukowany słownik BPE dla jakiegoś rzeczywistego tekstu.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! echo 'Cierpiałem na straszne lagi kilkanaście sekund lub dłużej czarnego ekranu przy próbie przełączenia się / uruchomienia prawie każdej aplikacji. Dodatkowo telefon mi się wyłączał czasem bez powodu sam z siebie, albo resetował. Ostatnio nawet przeglądarka zaczęła się często zawieszać i Android proponował wymuszone zamknięcie. Do tego te problemy z połączeniem do komputera przez USB.' | perl -C -ne 'print "$& " while/\p{L}+/g;' | python -m subword_nmt.apply_bpe -c bpe_vocab.txt
#+END_SRC
Ta konkretna implementacja zaznacza za pomocą sekwencji ~@@ ~ koniec jednostki podwyrazowej.

View File

@ -0,0 +1,133 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 13. <i>Podejście generatywne w ekstrakcji informacji</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Ekstrakcja informacji a podejście generatywne\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Podejście generatywne\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Do tej pory zadanie ekstrakcji informacji traktowaliśmy jako zadanie etykietowania sekwencji, tzn. uczyliśmy system zaznaczać tokeny składające się na ekstrahowane informacje.\n",
"\n",
"![Ekstrakcja informacji jako etykietowanie sekwencji, schemat](./ie-seqlab.png)\n",
"\n",
"Możliwe jest inne podeście, **generatywne**, w którym podchodzimy do problemu ekstrakcji informacji jak do swego rodzaju **tłumaczenia maszynowego** — „tłumaczymy” tekst (wraz z pytaniem lub etykietą) na informację.\n",
"\n",
"![Ekstrakcja informacji w podejściu generatywnym](./ie-gener.png)\n",
"\n",
"To podejście może się wydawać trudniejsze niż etykietowanie sekwencji, ale wystarczająco zaawansowanej architekturze sieci, jest wykonalne.\n",
"\n",
"Zalety:\n",
"\n",
"- informacja nie musi być dosłownie zapisana w tekście, ekstraktor może nauczyć się również normalizacji czy parafrazowania,\n",
"- nie wprowadzamy wielu kroków przetwarzania (gdzie błędy mogą się\n",
" namnażać), system działa na zasadzie *end-to-end*.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Atencja\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Pierwsze systemu neuronowego tłumaczenia maszynowego używały siecie LSTM. Dopiero jednak dodanie tzw. atencji (*attention*) umożliwiło duży przeskok jakościowy. Najpierw atencję dodano do sieci rekurencyjnych, później powstały sieci oparte *wyłącznie* na atencji — modele Transformer.\n",
"\n",
"Idea atencji polega na tym, że sieć może kierować selektywnie „snop” uwagi na wyrazy na wejściu lub do tej pory wygenerowane wyrazy.\n",
"\n",
"Mechanizm atencji korzysta z:\n",
"\n",
"- z poprzedniego stanu sieci $\\vec{s^{k-1}}$ (to jest „miejsce”, z którego „kierujemy” atencję),\n",
"- z wektora reprezentującego słowo $\\vec{v}(t_i)$ (to jest „miejsce”, na które kierujemy atencję), gdzie\n",
" $\\vec{v}(t_i)$ to reprezentacja wektorowa wyrazu $t_i$ (statyczny embedding lub reprezentacja wektorowa\n",
" z poprzedniej warstwy dla sieci wielowarstwowej),\n",
"\n",
"aby wytworzyć wektor kontekstu $\\vec{\\xi^k}$ (który z kolei będzie w jakiś sposób wnosił wkład do wyliczenia nowej wartości stanu $\\vec{s^k}$ lub wyjścia $y^k$.\n",
"\n",
"Najpierw wyliczymy skalarne wartości atencji, tzn. liczby, które będą sygnalizowały, jak bardzo wektor $\\vec{v}(t_i)$ „pasuje” do $\\vec{s^{k-1}}$, w najprostszej wersji można po prostu skorzystać z iloczynu skalarnego (o ile $n=m$),\n",
"\n",
"$$a(\\vec{s^{k-1}}, \\vec{v}(t_i)) = \\vec{s^{k-1}}\\vec{v}(t_i).$$\n",
"\n",
"**Pytanie**: co jeśli $n$ nie jest równe $m$, tzn. rozmiar embeddingu nie jest równy rozmiarowi wektora stanu?\n",
"\n",
"W przypadku sieci LSTM korzysta się częściej z bardziej skomplikowanego wzoru zawierającego dodatkowe wyuczalne wagi:\n",
"\n",
"$$a(\\vec{s^{k-1}}, \\vec{v}(t_i)) = \\vec{w_a}\\operatorname{tanh}(W_a\\vec{s^{k-1}} + U_a\\vec{v}(t_i))$$\n",
"\n",
"**Pytanie**: jakie rozmiary mają macierze $W_a$, $U_a$ i wektor $w_a$?\n",
"\n",
"Powtórzmy, że wartości $a$ są wartościami skalarnymi, natomiast nie są one znormalizowane (nie sumują się do jedynki), normalizujemy je używając schematu podobnego do softmaxa:\n",
"\n",
"$$\\alpha_{i} = \\frac{e^{a(\\vec{s^{k-1}}, \\vec{v}(t_i))}}{\\sum_j e^{a(\\vec{s^{k-1}}, \\vec{v}(t_j))}}$$\n",
"\n",
"Wektor kontekstu $\\vec{\\xi^k}$ będzie po prostu średnią ważoną wektorowych reprezentacji słów:\n",
"\n",
"$$\\vec{\\xi^k} = \\sum_i \\alpha_i\\vec{v}(t_i)$$\n",
"\n",
"**Pytanie**: zasadniczo atencja jest środkiem do celu (żeby sieć się sprawniej uczyła), czy można atencja sama w sobie może być do czegoś przydatna?\n",
"\n"
]
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"org": null,
"subtitle": "13.Podejście generatywne w ekstrakcji informacji[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

View File

@ -0,0 +1,55 @@
* Ekstrakcja informacji a podejście generatywne
** Podejście generatywne
Do tej pory zadanie ekstrakcji informacji traktowaliśmy jako zadanie etykietowania sekwencji, tzn. uczyliśmy system zaznaczać tokeny składające się na ekstrahowane informacje.
[[./ie-seqlab.png]]
Możliwe jest inne podeście, *generatywne*, w którym podchodzimy do problemu ekstrakcji informacji jak do swego rodzaju *tłumaczenia maszynowego* — „tłumaczymy” tekst (wraz z pytaniem lub etykietą) na informację.
[[./ie-gener.png]]
To podejście może się wydawać trudniejsze niż etykietowanie sekwencji, ale wystarczająco zaawansowanej architekturze sieci, jest wykonalne.
Zalety:
- informacja nie musi być dosłownie zapisana w tekście, ekstraktor może nauczyć się również normalizacji czy parafrazowania,
- nie wprowadzamy wielu kroków przetwarzania (gdzie błędy mogą się
namnażać), system działa na zasadzie /end-to-end/.
** Atencja
Pierwsze systemu neuronowego tłumaczenia maszynowego używały siecie LSTM. Dopiero jednak dodanie tzw. atencji (/attention/) umożliwiło duży przeskok jakościowy. Najpierw atencję dodano do sieci rekurencyjnych, później powstały sieci oparte /wyłącznie/ na atencji — modele Transformer.
Idea atencji polega na tym, że sieć może kierować selektywnie „snop” uwagi na wyrazy na wejściu lub do tej pory wygenerowane wyrazy.
Mechanizm atencji korzysta z:
- z poprzedniego stanu sieci $\vec{s^{k-1}}$ (to jest „miejsce”, z którego „kierujemy” atencję),
- z wektora reprezentującego słowo $\vec{v}(t_i)$ (to jest „miejsce”, na które kierujemy atencję), gdzie
$\vec{v}(t_i)$ to reprezentacja wektorowa wyrazu $t_i$ (statyczny embedding lub reprezentacja wektorowa
z poprzedniej warstwy dla sieci wielowarstwowej),
aby wytworzyć wektor kontekstu $\vec{\xi^k}$ (który z kolei będzie w jakiś sposób wnosił wkład do wyliczenia nowej wartości stanu $\vec{s^k}$ lub wyjścia $y^k$.
Najpierw wyliczymy skalarne wartości atencji, tzn. liczby, które będą sygnalizowały, jak bardzo wektor $\vec{v}(t_i)$ „pasuje” do $\vec{s^{k-1}}$, w najprostszej wersji można po prostu skorzystać z iloczynu skalarnego (o ile $n=m$),
$$a(\vec{s^{k-1}}, \vec{v}(t_i)) = \vec{s^{k-1}}\vec{v}(t_i).$$
*Pytanie*: co jeśli $n$ nie jest równe $m$, tzn. rozmiar embeddingu nie jest równy rozmiarowi wektora stanu?
W przypadku sieci LSTM korzysta się częściej z bardziej skomplikowanego wzoru zawierającego dodatkowe wyuczalne wagi:
$$a(\vec{s^{k-1}}, \vec{v}(t_i)) = \vec{w_a}\operatorname{tanh}(W_a\vec{s^{k-1}} + U_a\vec{v}(t_i))$$
*Pytanie*: jakie rozmiary mają macierze $W_a$, $U_a$ i wektor $w_a$?
Powtórzmy, że wartości $a$ są wartościami skalarnymi, natomiast nie są one znormalizowane (nie sumują się do jedynki), normalizujemy je używając schematu podobnego do softmaxa:
$$\alpha_{i} = \frac{e^{a(\vec{s^{k-1}}, \vec{v}(t_i))}}{\sum_j e^{a(\vec{s^{k-1}}, \vec{v}(t_j))}}$$
Wektor kontekstu $\vec{\xi^k}$ będzie po prostu średnią ważoną wektorowych reprezentacji słów:
$$\vec{\xi^k} = \sum_i \alpha_i\vec{v}(t_i)$$
*Pytanie*: zasadniczo atencja jest środkiem do celu (żeby sieć się sprawniej uczyła), czy można atencja sama w sobie może być do czegoś przydatna?

389
wyk/14_pretrenowanie.ipynb Normal file
View File

@ -0,0 +1,389 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 14. <i>Pretrenowane modele języka</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Pretrenowanie modeli\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"System AlphaZero uczy się grając sam ze sobą — wystarczy 24 godziny,\n",
"by system nauczył się grać w szachy lub go na nadludzkim poziomie.\n",
"\n",
"**Pytanie**: Dlaczego granie samemu ze sobą nie jest dobrym sposobem\n",
" nauczenia się grania w szachy dla człowieka, a dla maszyny jest?\n",
"\n",
"Co jest odpowiednikiem grania samemu ze sobą w świecie przetwarzania tekstu?\n",
"Tzn. **pretrenowanie** (*pretraining*) na dużym korpusie tekstu. (Tekst jest tani!)\n",
"\n",
"Jest kilka sposobów na pretrenowanie modelu, w każdym razie sprowadza\n",
"się do odgadywania następnego bądź zamaskowanego słowa.\n",
"W każdym razie zawsze stosujemy softmax (być może ze „sztuczkami” takimi jak\n",
"negatywne próbkowanie albo hierarchiczny softmax) na pewnej **reprezentacji kontekstowej**:\n",
"\n",
"$$\\vec{p} = \\operatorname{softmax}(f(\\vec{c})).$$\n",
"\n",
"Model jest karany przy użyciu funkcji log loss:\n",
"\n",
"$$-\\log(p_j),$$\n",
"\n",
"gdzie $w_j$ jest wyrazem, który pojawił się rzeczywiście w korpusie.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Przewidywanie słowa (GPT-2)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jeden ze sposobów pretrenowania modelu to po prostu przewidywanie\n",
"następnego słowa.\n",
"\n",
"Zainstalujmy najpierw bibliotekę transformers.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"! pip install transformers"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"50257\n"
]
},
{
"data": {
"text/plain": [
"[('Âł', 0.6182783842086792),\n",
" ('È', 0.1154019758105278),\n",
" ('Ñģ', 0.026960616931319237),\n",
" ('_____', 0.024418892338871956),\n",
" ('________', 0.014962316490709782),\n",
" ('ÃĤ', 0.010653386823832989),\n",
" ('ä¸Ń', 0.008340531960129738),\n",
" ('Ñ', 0.007557711564004421),\n",
" ('Ê', 0.007046067621558905),\n",
" ('ãĢ', 0.006875576451420784),\n",
" ('ile', 0.006685272324830294),\n",
" ('____', 0.006307446397840977),\n",
" ('âĢĭ', 0.006306538358330727),\n",
" ('ÑĢ', 0.006197483278810978),\n",
" ('ĠBelarus', 0.006108700763434172),\n",
" ('Æ', 0.005720408633351326),\n",
" ('ĠPoland', 0.0053678699769079685),\n",
" ('á¹', 0.004606408067047596),\n",
" ('îĢ', 0.004161055199801922),\n",
" ('????', 0.004056799225509167),\n",
" ('_______', 0.0038176667876541615),\n",
" ('ä¸', 0.0036082742735743523),\n",
" ('Ì', 0.003221835708245635),\n",
" ('urs', 0.003080119378864765),\n",
" ('________________', 0.0027312245219945908),\n",
" ('ĠLithuania', 0.0023860156070441008),\n",
" ('ich', 0.0021211160346865654),\n",
" ('iz', 0.002069818088784814),\n",
" ('vern', 0.002001357264816761),\n",
" ('ÅĤ', 0.001717406208626926)]"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"from transformers import GPT2Tokenizer, GPT2LMHeadModel\n",
"tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large')\n",
"model = GPT2LMHeadModel.from_pretrained('gpt2-large')\n",
"text = 'Warsaw is the capital city of'\n",
"encoded_input = tokenizer(text, return_tensors='pt')\n",
"output = model(**encoded_input)\n",
"next_token_probs = torch.softmax(output[0][:, -1, :][0], dim=0)\n",
"\n",
"nb_of_tokens = next_token_probs.size()[0]\n",
"print(nb_of_tokens)\n",
"\n",
"_, top_k_indices = torch.topk(next_token_probs, 30, sorted=True)\n",
"\n",
"words = tokenizer.convert_ids_to_tokens(top_k_indices)\n",
"\n",
"top_probs = []\n",
"\n",
"for ix in range(len(top_k_indices)):\n",
" top_probs.append((words[ix], next_token_probs[top_k_indices[ix]].item()))\n",
"\n",
"top_probs"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Zalety tego podejścia:\n",
"\n",
"- prostota,\n",
"- dobra podstawa do strojenia systemów generowania tekstu zwłaszcza\n",
" „otwartego” (systemy dialogowe, generowanie (fake) newsów, streszczanie tekstu),\n",
" ale niekoniecznie tłumaczenia maszynowego,\n",
"- zaskakująca skuteczność przy uczeniu *few-shot* i *zero-shot*.\n",
"\n",
"Wady:\n",
"\n",
"- asymetryczność, przetwarzanie tylko z lewej do prawej, preferencja\n",
" dla lewego kontekstu,\n",
"- mniejsza skuteczność przy dostrajaniu do zadań klasyfikacji i innych zadań\n",
" niepolegających na prostym generowaniu.\n",
"\n",
"Przykłady modeli: GPT, GPT-2, GPT-3, DialoGPT.\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Maskowanie słów (BERT)\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Inną metodą jest maskowanie słów (*Masked Language Modeling*, *MLM*).\n",
"\n",
"W tym podejściu losowe wybrane zastępujemy losowe słowa specjalnym\n",
"tokenem (`[MASK]`) i każemy modelowi odgadywać w ten sposób\n",
"zamaskowane słowa (z uwzględnieniem również prawego kontekstu!).\n",
"\n",
"Móciąc ściśle, w jednym z pierwszych modeli tego typu (BERT)\n",
"zastosowano schemat, w którym również niezamaskowane słowa są odgadywane (!):\n",
"\n",
"- wybieramy losowe 15% wyrazów do odgadnięcia\n",
"- 80% z nich zastępujemy tokenem `[MASK]`,\n",
"- 10% zastępujemy innym losowym wyrazem,\n",
"- 10% pozostawiamy bez zmian.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/filipg/.local/lib/python3.9/site-packages/transformers/models/auto/modeling_auto.py:806: FutureWarning: The class `AutoModelWithLMHead` is deprecated and will be removed in a future version. Please use `AutoModelForCausalLM` for causal language models, `AutoModelForMaskedLM` for masked language models and `AutoModelForSeq2SeqLM` for encoder-decoder models.\n",
" warnings.warn(\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"W którym państwie leży Bombaj? W USA. (score: 0.16715531051158905)\n",
"W którym państwie leży Bombaj? W India. (score: 0.09912960231304169)\n",
"W którym państwie leży Bombaj? W Indian. (score: 0.039642028510570526)\n",
"W którym państwie leży Bombaj? W Nepal. (score: 0.027137665078043938)\n",
"W którym państwie leży Bombaj? W Pakistan. (score: 0.027065709233283997)\n",
"W którym państwie leży Bombaj? W Polsce. (score: 0.023737527430057526)\n",
"W którym państwie leży Bombaj? W .... (score: 0.02306722290813923)\n",
"W którym państwie leży Bombaj? W Bangladesh. (score: 0.022106658667325974)\n",
"W którym państwie leży Bombaj? W .... (score: 0.01628892682492733)\n",
"W którym państwie leży Bombaj? W Niemczech. (score: 0.014501162804663181)\n"
]
}
],
"source": [
"from transformers import AutoModelWithLMHead, AutoTokenizer\n",
"import torch\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"xlm-roberta-large\")\n",
"model = AutoModelWithLMHead.from_pretrained(\"xlm-roberta-large\")\n",
"\n",
"sequence = f'W którym państwie leży Bombaj? W {tokenizer.mask_token}.'\n",
"\n",
"input_ids = tokenizer.encode(sequence, return_tensors=\"pt\")\n",
"mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1]\n",
"\n",
"token_logits = model(input_ids)[0]\n",
"mask_token_logits = token_logits[0, mask_token_index, :]\n",
"mask_token_logits = torch.softmax(mask_token_logits, dim=1)\n",
"\n",
"top_10 = torch.topk(mask_token_logits, 10, dim=1)\n",
"top_10_tokens = zip(top_10.indices[0].tolist(), top_10.values[0].tolist())\n",
"\n",
"for token, score in top_10_tokens:\n",
" print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])), f\"(score: {score})\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Przykłady: BERT, RoBERTa (również Polish RoBERTa).\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Podejście generatywne (koder-dekoder).\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"System ma wygenerować odpowiedź na różne pytania (również\n",
"odpowiadające zadaniu MLM), np.:\n",
"\n",
"- \"translate English to German: That is good.\" => \"Das ist gut.\"\n",
"- \"cola sentence: The course is jumping well.\" => \"not acceptable\"\n",
"- \"summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi&#x2026;\"\n",
" => \"six people hospitalized after a storm in attala county\"\n",
"- \"Thank you for <X> me to your party <Y> week.\" => <X> for inviting <Y> last <Z>\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['World War II ended in World War II.',\n",
" 'World War II ended in 1945..',\n",
" 'World War II ended in 1945.',\n",
" 'World War II ended in 1945.',\n",
" 'World War II ended in 1945.']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"from transformers import T5Tokenizer, T5Config, T5ForConditionalGeneration\n",
"\n",
"T5_PATH = 't5-base'\n",
"\n",
"t5_tokenizer = T5Tokenizer.from_pretrained(T5_PATH)\n",
"t5_config = T5Config.from_pretrained(T5_PATH)\n",
"t5_mlm = T5ForConditionalGeneration.from_pretrained(T5_PATH, config=t5_config)\n",
"\n",
"slot = '<extra_id_0>'\n",
"\n",
"text = f'World War II ended in {slot}.'\n",
"\n",
"encoded = t5_tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')\n",
"input_ids = encoded['input_ids']\n",
"\n",
"outputs = t5_mlm.generate(input_ids=input_ids,\n",
" num_beams=200, num_return_sequences=5,\n",
" max_length=5)\n",
"\n",
"_0_index = text.index(slot)\n",
"_result_prefix = text[:_0_index]\n",
"_result_suffix = text[_0_index+len(slot):]\n",
"\n",
"def _filter(output, end_token='<extra_id_1>'):\n",
" _txt = t5_tokenizer.decode(output[2:], skip_special_tokens=False, clean_up_tokenization_spaces=False)\n",
" if end_token in _txt:\n",
" _end_token_index = _txt.index(end_token)\n",
" return _result_prefix + _txt[:_end_token_index] + _result_suffix\n",
" else:\n",
" return _result_prefix + _txt + _result_suffix\n",
"\n",
"\n",
"results = [_filter(out) for out in outputs]\n",
"results"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"(Zob. [https://arxiv.org/pdf/1910.10683.pdf](https://arxiv.org/pdf/1910.10683.pdf))\n",
"\n",
"Przykład: T5, mT5\n",
"\n"
]
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"org": null,
"subtitle": "14.Pretrenowane modele języka[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

212
wyk/14_pretrenowanie.org Normal file
View File

@ -0,0 +1,212 @@
* Pretrenowanie modeli
System AlphaZero uczy się grając sam ze sobą — wystarczy 24 godziny,
by system nauczył się grać w szachy lub go na nadludzkim poziomie.
*Pytanie*: Dlaczego granie samemu ze sobą nie jest dobrym sposobem
nauczenia się grania w szachy dla człowieka, a dla maszyny jest?
Co jest odpowiednikiem grania samemu ze sobą w świecie przetwarzania tekstu?
Tzn. *pretrenowanie* (/pretraining/) na dużym korpusie tekstu. (Tekst jest tani!)
Jest kilka sposobów na pretrenowanie modelu, w każdym razie sprowadza
się do odgadywania następnego bądź zamaskowanego słowa.
W każdym razie zawsze stosujemy softmax (być może ze „sztuczkami” takimi jak
negatywne próbkowanie albo hierarchiczny softamx) na pewnej *representecji kontekstowej*:
$$\vec{p} = \operatorname{softmax}(f(\vec{c})).$$
Model jest karany używając funkcji log loss:
$$-\log(p_j),$$
gdzie $w_j$ jest wyrazem, który pojawił się rzeczywiście w korpusie.
** Przewidywanie słowa (GPT-2)
Jeden ze sposobów pretrenowania modelu to po prostu przewidywanie
następnego słowa.
Zainstalujmy najpierw bibliotekę transformers.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
! pip install transformers
#+END_SRC
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
from transformers import GPT2Tokenizer, GPT2LMHeadModel
tokenizer = GPT2Tokenizer.from_pretrained('gpt2-large')
model = GPT2LMHeadModel.from_pretrained('gpt2-large')
text = "Warsaw is the capital city of"
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
next_token_probs = torch.softmax(output[0][:, -1, :][0], dim=0)
nb_of_tokens = next_token_probs.size()[0]
_, top_k_indices = torch.topk(next_token_probs, 30, sorted=True)
top_k_indices
# words = tokenizer.convert_ids_to_tokens(top)
# top_probs = []
# for ix in range(len(top)):
# top_probs.append((words[ix], next_token_probs[top[ix]].item()))
# top_probs
#+END_SRC
#+RESULTS:
:results:
# Out[8]:
#+BEGIN_EXAMPLE
[('Ġthe', 0.4415026307106018),
('ĠPoland', 0.236798495054245),
('ĠBelarus', 0.10114768147468567),
('ĠUkraine', 0.058283545076847076),
('Ġeastern', 0.020564062520861626),
('ĠEastern', 0.011137397028505802),
('ĠPolish', 0.010205904021859169),
('ĠWestern', 0.00833223108202219),
('Ġwestern', 0.006872199941426516),
('Ġa', 0.004939113277941942),
('ĠSlovakia', 0.003553805174306035),
('ĠLithuania', 0.003335304092615843),
('ĠRussia', 0.002872465644031763),
('Ġcentral', 0.002493523992598057),
('Ġmodern', 0.0022767107002437115),
('ĠCzech', 0.0022264323197305202),
('ĠPr', 0.002146221464499831),
('Ġformer', 0.0021054286044090986),
('Ġwhat', 0.0017435317859053612),
('ĠSlov', 0.0014634730760008097),
('ĠUkrainian', 0.0014347084797918797),
('ĠCentral', 0.0013676199596375227),
('ĠSouth', 0.0013484350638464093),
('Ġone', 0.001204205909743905),
('ĠNorthern', 0.0011802552035078406),
('ĠWest', 0.001175572513602674),
('ĠEast', 0.0011596156982704997),
('Ġsouthern', 0.0011580033460631967),
('Ġnorthern', 0.001110077602788806),
('Ġ"', 0.0010494199814274907)]
#+END_EXAMPLE
:end:
Zalety tego podejścia:
- prostota,
- dobra podstawa do strojenia systemów generowania tekstu zwłaszcza
„otwartego” (systemy dialogowe, generowanie (fake) newsów, streszczanie tekstu),
ale niekoniecznie tłumaczenia maszynowego,
- zaskakująca skuteczność przy uczeniu /few-shot/ i /zero-shot/.
Wady:
- asymetryczność, przetwarzanie tylko z lewej do prawej, preferencja
dla lewego kontekstu,
- mniejsza skuteczność przy dostrajaniu do zadań klasyfikacji i innych zadań
niepolegających na prostym generowaniu.
Przykłady modeli: GPT, GPT-2, GPT-3, DialoGPT.
** Maskowanie słów (BERT)
Inną metodą jest maskowanie słów (/Masked Language Modeling/, /MLM/).
W tym podejściu losowe wybrane zastępujemy losowe słowa specjalnym
tokenem (~[MASK]~) i każemy modelowi odgadywać w ten sposób
zamaskowane słowa (z uwzględnieniem również prawego kontekstu!).
Móciąc ściśle, w jednym z pierwszych modeli tego typu (BERT)
zastosowano schemat, w którym również niezamaskowane słowa są odgadywane (!):
- wybieramy losowe 15% wyrazów do odgadnięcia
- 80% z nich zastępujemy tokenem ~[MASK]~,
- 10% zastępujemy innym losowym wyrazem,
- 10% pozostawiamy bez zmian.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
from transformers import AutoModelWithLMHead, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
model = AutoModelWithLMHead.from_pretrained("xlm-roberta-large")
sequence = f'II wojna światowa zakończyła się w {tokenizer.mask_token} roku.'
input_ids = tokenizer.encode(sequence, return_tensors="pt")
mask_token_index = torch.where(input_ids == tokenizer.mask_token_id)[1]
token_logits = model(input_ids)[0]
mask_token_logits = token_logits[0, mask_token_index, :]
mask_token_logits = torch.softmax(mask_token_logits, dim=1)
top_10 = torch.topk(mask_token_logits, 10, dim=1)
top_10_tokens = zip(top_10.indices[0].tolist(), top_10.values[0].tolist())
for token, score in top_10_tokens:
print(sequence.replace(tokenizer.mask_token, tokenizer.decode([token])), f"(score: {score})")
#+END_SRC
#+RESULTS:
:results:
# Out[3]:
:end:
Przykłady: BERT, RoBERTa (również Polish RoBERTa).
** Podejście generatywne (koder-dekoder).
System ma wygenerować odpowiedź na różne pytania (również
odpowiadające zadaniu MLM), np.:
- "translate English to German: That is good." => "Das ist gut."
- "cola sentence: The course is jumping well." => "not acceptable"
- "summarize: state authorities dispatched emergency crews tuesday to survey the damage after an onslaught of severe weather in mississippi..."
=> "six people hospitalized after a storm in attala county"
- "Thank you for <X> me to your party <Y> week." => <X> for inviting <Y> last <Z>
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
from transformers import T5Tokenizer, T5Config, T5ForConditionalGeneration
T5_PATH = 't5-base'
t5_tokenizer = T5Tokenizer.from_pretrained(T5_PATH)
t5_config = T5Config.from_pretrained(T5_PATH)
t5_mlm = T5ForConditionalGeneration.from_pretrained(T5_PATH, config=t5_config)
slot = '<extra_id_0>'
text = f'Warsaw is the {slot} of Poland.'
encoded = t5_tokenizer.encode_plus(text, add_special_tokens=True, return_tensors='pt')
input_ids = encoded['input_ids']
outputs = t5_mlm.generate(input_ids=input_ids,
num_beams=200, num_return_sequences=5,
max_length=5)
_0_index = text.index(slot)
_result_prefix = text[:_0_index]
_result_suffix = text[_0_index+len(slot):]
def _filter(output, end_token='<extra_id_1>'):
_txt = t5_tokenizer.decode(output[2:], skip_special_tokens=False, clean_up_tokenization_spaces=False)
if end_token in _txt:
_end_token_index = _txt.index(end_token)
return _result_prefix + _txt[:_end_token_index] + _result_suffix
else:
return _result_prefix + _txt + _result_suffix
results = [_filter(out) for out in outputs]
results
#+END_SRC
(Zob. https://arxiv.org/pdf/1910.10683.pdf)
Przykład: T5, mT5

273
wyk/15_transformer.ipynb Normal file
View File

@ -0,0 +1,273 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"![Logo 1](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech1.jpg)\n",
"<div class=\"alert alert-block alert-info\">\n",
"<h1> Ekstrakcja informacji </h1>\n",
"<h2> 15. <i>Sieci Transformer i ich zastosowanie w ekstrakcji informacji</i> [wykład]</h2> \n",
"<h3> Filip Graliński (2021)</h3>\n",
"</div>\n",
"\n",
"![Logo 2](https://git.wmi.amu.edu.pl/AITech/Szablon/raw/branch/master/Logotyp_AITech2.jpg)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Modele Transformer\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Atencja\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Atencję w modelach Transformer można interpretować jako rodzaj\n",
"„miękkiego” odpytywania swego rodzaju bazy danych, w której\n",
"przechowywane są pary klucz-wartość. Mamy trzy rodzaje wektorów (a\n",
"właściwie macierzy, bo wektory są od razu upakowane w macierze):\n",
"\n",
"- $Q$ - macierz zapytań,\n",
"- $K$ - macierz kluczy,\n",
"- $V$ - macierz wartości odpowiadających kluczom $K$.\n",
"\n",
"W atencji modeli Transformer patrzymy jak bardzo zapytania $Q$ pasują\n",
"do kluczy $K$ i na tej podstawie zwracamy wartości $V$ (im bardziej\n",
"**klucz** pasuje do **zapytania**, tym większy wkład wnosi odpowiednia **wartość**).\n",
"Ten rodzaj odpytywania można zrealizować z pomocą mnożenia macierzy i funkcji softmax:\n",
"\n",
"$$\\operatorname{Atention}(Q,K,V) = \\operatorname{softmax}(QK^T)V$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Uproszczony przykład\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Załóżmy, że rozmiar embeddingu wynosi 4, w macierzach rozpatrywać\n",
"będziemy po 3 wektory naraz (możemy sobie wyobrazić, że zdanie zawiera 3 wyrazy).\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[20.5700, 36.2400, 31.1000],\n",
" [15.1100, 13.9100, 7.9500],\n",
" [ 2.2100, 7.1800, 7.4000]])"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"Q = torch.tensor([\n",
" [0.3, -2.0, 0.4, 6.0],\n",
" [-1.0, 1.5, 0.2, 3.0],\n",
" [0.3, -1.0, 0.2, 1.0]])\n",
"\n",
"K = torch.tensor([\n",
" [-0.5, 1.7, 0.3, 4.0],\n",
" [0.4, -1.5, 0.3, 5.5],\n",
" [-1.0, -3.5, 1.0, 4.0]])\n",
"\n",
"M = Q @ torch.transpose(K, 0, 1)\n",
"M"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Jak widać, najbardziej pierwszy wektor $Q$ pasuje do drugiego wektora $K$.\n",
"Znormalizujmy te wartości używać funkcji softmax.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[1.5562e-07, 9.9418e-01, 5.8236e-03],\n",
" [7.6807e-01, 2.3134e-01, 5.9683e-04],\n",
" [3.0817e-03, 4.4385e-01, 5.5307e-01]])"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"Mn = torch.softmax(M, 1)\n",
"Mn"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Drugi wektor zapytania najbardziej pasuje do pierwszego klucza, trochę\n",
"mniej do drugiego klucza, o wiele mniej do trzeciego klucza. Te\n",
"wektory to oczywiście wektory atencji (drugie słowo najbardziej\n",
"„patrzy” na pierwsze słowo).\n",
"\n",
"Teraz będziemy przemnażać przez wektory wartości:\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[ 3.9750e+00, 9.9419e-02, 1.0116e-01, 1.5765e-01, 5.8255e-04],\n",
" [ 9.2517e-01, 6.9357e+00, 2.3313e-02, -3.8112e+00, 9.2174e-01],\n",
" [ 1.6095e+00, 7.2120e-02, 2.1031e-01, 5.5597e+00, 5.9005e-02]])"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import torch\n",
"\n",
"V = torch.tensor([\n",
" [0.0, 9.0, 0.0, -5.0, 1.2],\n",
" [4.0, 0.1, 0.1, 0.1, 0.0],\n",
" [-0.3, 0.0, 0.3, 10.0, 0.1]])\n",
"\n",
"Mn @ V"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Dodatkowa normalizacja\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"W praktyce dobrze jest znormalizować pierwszy iloczyn przez\n",
"$\\sqrt{d_k}$, gdzie $d_k$ to rozmiar wektora klucza.\n",
"\n",
"$$\\operatorname{Atention}(Q,K,V) = \\operatorname{softmax}(\\frac{QK^T}{\\sqrt{d^k}})V$$\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Skąd się biorą Q, K i V?\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Wektory (macierze) $Q$, $K$ i $V$ w pierwszej warstwie pochodzą z\n",
"embeddingów tokenów $E$ (właściwie jednostek BPE).\n",
"\n",
"- $Q$ = $EW^Q$\n",
"- $K$ = $EW^K$\n",
"- $V$ = $EW^V$\n",
"\n",
"W kolejnych warstwach zamiast $E$ wykorzystywane jest wyjście z poprzedniej warstwy.\n",
"\n",
"## Zastosowanie w ekstrakcji informacji\n",
"\n",
"W prosty sposób możemy do sieci Transformer dołączyć głowicę realizującą etykietowanie sekwencji."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Literatura\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[https://arxiv.org/pdf/1706.03762.pdf](https://arxiv.org/pdf/1706.03762.pdf)\n",
"\n"
]
}
],
"metadata": {
"author": "Filip Graliński",
"email": "filipg@amu.edu.pl",
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"lang": "pl",
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
},
"org": null,
"subtitle": "15.Sieci Transformer i ich zastosowanie w ekstrakcji informacji[wykład]",
"title": "Ekstrakcja informacji",
"year": "2021"
},
"nbformat": 4,
"nbformat_minor": 4
}

124
wyk/15_transformer.org Normal file
View File

@ -0,0 +1,124 @@
* Modele Transformer
** Atencja
Atencję w modelach Transformer można interpretować jako rodzaj
„miękkiego” odpytywania swego rodzaju bazy danych, w której
przechowywane są pary klucz-wartość. Mamy trzy rodzaje wektorów (a
właściwie macierzy, bo wektory są od razu upakowane w macierze):
- $Q$ - macierz zapytań,
- $K$ - macierz kluczy,
- $V$ - macierz wartości odpowiadających kluczom $K$.
W atencji modeli Transformer patrzymy jak bardzo zapytania $Q$ pasują
do kluczy $K$ i na tej podstawie zwracamy wartości $V$ (im bardziej
*klucz* pasuje do *zapytania*, tym większy wkład wnosi odpowiednia *wartość*).
Ten rodzaj odpytywania można zrealizować z pomocą mnożenia macierzy i funkcji softmax:
$$\operatorname{Atention}(Q,K,V) = \operatorname{softmax}(QK^T)V$$
*** Uproszczony przykład
Załóżmy, że rozmiar embeddingu wynosi 4, w macierzach rozpatrywać
będziemy po 3 wektory naraz (możemy sobie wyobrazić, że zdanie zawiera 3 wyrazy).
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
Q = torch.tensor([
[0.3, -2.0, 0.4, 6.0],
[-1.0, 1.5, 0.2, 3.0],
[0.3, -1.0, 0.2, 1.0]])
K = torch.tensor([
[-0.5, 1.7, 0.3, 4.0],
[0.4, -1.5, 0.3, 5.5],
[-1.0, -3.5, 1.0, 4.0]])
M = Q @ torch.transpose(K, 0, 1)
M
#+END_SRC
#+RESULTS:
:results:
# Out[11]:
#+BEGIN_EXAMPLE
tensor([[20.5700, 36.2400, 31.1000],
[15.1100, 13.9100, 7.9500],
[ 2.2100, 7.1800, 7.4000]])
#+END_EXAMPLE
:end:
Jak widać, najbardziej pierwszy wektor $Q$ pasuje do drugiego wektora $K$.
Znormalizujmy te wartości używać funkcji softmax.
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
Mn = torch.softmax(M, 1)
Mn
#+END_SRC
#+RESULTS:
:results:
# Out[12]:
#+BEGIN_EXAMPLE
tensor([[1.5562e-07, 9.9418e-01, 5.8236e-03],
[7.6807e-01, 2.3134e-01, 5.9683e-04],
[3.0817e-03, 4.4385e-01, 5.5307e-01]])
#+END_EXAMPLE
:end:
Drugi wektor zapytania najbardziej pasuje do pierwszego klucza, trochę
mniej do drugiego klucza, o wiele mniej do trzeciego klucza. Te
wektory to oczywiście wektory atencji (drugie słowo najbardziej
„patrzy” na pierwsze słowo).
Teraz będziemy przemnażać przez wektory wartości:
#+BEGIN_SRC ipython :session mysession :exports both :results raw drawer
import torch
V = torch.tensor([
[0.0, 9.0, 0.0, -5.0],
[4.0, 0.1, 0.1, 0.1],
[-0.3, 0.0, 0.3, 10.0]])
Mn @ V
#+END_SRC
#+RESULTS:
:results:
# Out[13]:
#+BEGIN_EXAMPLE
tensor([[ 3.9750, 0.0994, 0.1012, 0.1577],
[ 0.9252, 6.9357, 0.0233, -3.8112],
[ 1.6095, 0.0721, 0.2103, 5.5597]])
#+END_EXAMPLE
:end:
*** Dodatkowa normalizacja
W praktyce dobrze jest znormalizować pierwszy iloczyn przez
$\sqrt{d_k}$, gdzie $d_k$ to rozmiar wektora klucza.
$$\operatorname{Atention}(Q,K,V) = \operatorname{softmax}(\frac{QK^T}{d^k})V$$
*** Skąd się biorą Q, K i V?
Wektory (macierze) $Q$, $K$ i $V$ w pierwszej warstwie pochodzą z
embeddingów tokenów $E$ (właściwie jednostek BPE).
- $Q$ = $EW^Q$
- $K$ = $EW^K$
- $V$ = $EW^V$
W kolejnych warstwach zamiast $E$ wykorzystywane jest wyjście z poprzedniej warstwy.
** Literatura
https://arxiv.org/pdf/1706.03762.pdf

BIN
wyk/bpe.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 124 KiB

1
wyk/crf-viterbi.drawio Normal file
View File

@ -0,0 +1 @@
<mxfile host="app.diagrams.net" modified="2021-05-26T13:43:59.377Z" agent="5.0 (X11)" etag="4emVx1cQBqc02lQgOp_X" version="14.6.13" type="device"><diagram id="7pFB8Xg2-vPC_YrQG171" name="Page-1">5ZpNc5swEIZ/Dcd2jAQ2PsbYTQ/pTKaZTt3eFJCNWowYWY5xf31FEAa0dr4DDLl40IIk9Lyr1UrYwv4muxQkjb7xkMYWGoWZhecWQlPHVr+54VAYXIwLw1qwsDDZleGG/aPaONLWHQvptvGg5DyWLG0aA54kNJANGxGC75uPrXjc7DUlawoMNwGJofUnC2VUWD00qexfKVtHZc/2eFrc2ZDyYT2SbURCvq+Z8MLCvuBcFlebzKdxzq7kUtT7cubu8cUETeRTKiwvJ+j3gvFb5s3Dq/2PdDlzPulW7ki80wO+iIl+X3koIUiaqS5mkdzEymCry60U/C/1ecyFsiQ8UU/OViyODROJ2TpRxUC9JFX22R0Vkim8F/rGhoVh3s1sHzFJb1IS5H3ulS8pm+C7JKT5+49USb+qaoBmZxnYR7LKIynfUCkO6pGywliLob3RdnR5X2lbmqKarKWGRHvT+thyBVxdaObP4I8A/82A8SO3Z/gxwJ/yPaOW71rTmeU7ljcZrhq4b2o4QA0f0FfNqNB/jlFNFLJNi/VgxbKc2tuED7dJzIPE8Ali+L2IjQGx634TQyd8rFViE0Dse7+J4VHHxJAHAYUqR9JFLmTE1zwh8aKyGsGqeuaK81TD+0OlPOiEj+wkb6KlGZPL2vWvvKnPri7NM93yfeFQFhI13mW9UKuVF6tq96WyXjG+fFAPa6YY8J0I6AOwNCtJxJrKh/KuM04gaEwku2u+yJtL6vU90CIzT+s60E7fNdDWcwUL4ZUX0CAAiYW6c+u5jvtWyZjBuPPQXG75+hubTWSdx2Yb7t96NpOx27OUyYZbrp7lTCay7icm3Cb1bGKayLqfmHAvs7XcmQKp2hvZljsHAIezr/SMKT+GYrS6r7Rh0m8PFz844zoxF9rFD9NNNFz83uNZVbv0YeqKh0sfO0bs6dr5EUxqBxx7DOe3y5WgM/ow2Rtw6AHH6507P0wcBxx7DOfHo66d3wX08xwUFTkoGnQOCpZh1PVUgEf1NTGGvSEAy8K465kBNwQ1MfCHEgN1vUZjeIYF6NMkvMj/zJFjjMl2y4KmFi89QH38zB9yrHFyT3AqbU8+ydc9XHOmOq5kmhoyuQb/4lOErlVJABrC5jGvbTRUfKsADd1reRz2K+SFOcCz5X3dx6Dq+8+vso12PgaVpF/8NagdVzselpUeMn6pq03OLLptuRo8dLv9KIdujiGiPe044cGn11g1Cn/YSthTM9t5NyVUsfr/YDGLqj9h4sV/</diagram></mxfile>

BIN
wyk/crf-viterbi.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

1
wyk/ie-gener.drawio Normal file
View File

@ -0,0 +1 @@
<mxfile host="app.diagrams.net" modified="2021-06-09T07:54:35.721Z" agent="5.0 (X11)" etag="NciLNBJF1axAiSJ0r0sv" version="14.7.3" type="device"><diagram id="HvCQlNLg7fWOxGx64C6g" name="Page-1">3Vjbbts4EP0aAe2DF9bNiR9jO9lisVekQLF9Y8SxRJsSVYqKrHz9Di+SJctF0m6TtvGDRB2RM+QcnhnKXrjOD79KUmZ/CArcC+b04IUbLwiWkY9XDbQWiMPQAqlk1EL+EbhlD+DAuUNrRqEadVRCcMXKMZiIooBEjTAipWjG3baCj72WJIUJcJsQPkU/MKoyi14GF0f8HbA06zz7i6V9k5Ous1tJlREqmgEUXnvhWgqhbCs/rIHr2HVxseNuPvO2n5iEQj1lgPgrjt7/+du/G76THw8f5Wyxv545K/eE127BXrDgaG+V4atFqlsdUpWk0OtQrQvO4lOtJ7+6I8k+laIu6CwRXEgvvMJ+Mr17E8Sxp6e1xutJ++1xfOfoHRDKirTzh0uxLsfTQHg6t/LFJ/u7kJDr8JZVre/UGEOPTOmtl4Oyo3FjVrgxQdX6LS6wZBVLzDLnwJnrVQE1NjTI6ioX+lFBXhqbrEgYZbQutOlaXzi5Q/+6t+p8g9l0aUG0G84+1eSXxyM5iFswCleg4GC2gco5Aj42t4zztQ3ZphAF2CibpYSb+Pj0XpQIzDB84arJmIJbxLXVBjMEYuIe5JYbKWSMUigQM4SA3ql6VKWk2EPnywvCufn100QDOL3P6sDv1YVZCQRSIVvs0g24dIJ0GclfuufmqO8gclg20rYDicspaW/7KDtsOOV9gQqDiQoV7CvNbAM7bx17y1XCRNM+gaRx6BxNZ5jDHZJi4DcJRg0QX+mYMsx7V+5FjtRoN2cpHNP1LUjxHyflHCfBc1ESnkmMJ8HHhF7q5pbD4UqXGgwFFNQ1NwknFSp9TI81AnRSdB4N1CAQ8ZlAdJgEThS7H5s/Fx3n4W/BTFZxPERRPOIBpTc2UYlaJuBGDavNiaHYf8SQIjIFNTFkyOqX/fX8RRP+tKIk2Sc7nSBNlnwgFaEPDEymtymRdfkQiZwpMcPbIFuyL8iWP6kQo8WJEC++sxCXEyK7SquLXV19XeH6llF/1moVh2M++kAP+Fi+JB9doh4Q0rR9kYJOLXey08qbprXSy0RDCjDHma2QOUl28Pb1Cik+PWYspsT1Ve9lmDtX0yxblN13dP1Tm7MnVP3B0gtvpqwOsuJg8P8TI4et+oGlODk4Rk88OD4fo9MqV7aKFFqGN6DaPQNFXq/E/PkJIeF3rlXdmWeUGwfJrzUfdfZkb0ia53XF9A0f1pF3eWE84PLb5KHAoz9GQ1QKv6rsV+KO7PXqrJVByn2tBMfLk+J3+Xw5FB+P/8XYU+jxD63w+j8=</diagram></mxfile>

BIN
wyk/ie-gener.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

1
wyk/ie-seqlab.drawio Normal file
View File

@ -0,0 +1 @@
<mxfile host="app.diagrams.net" modified="2021-06-09T07:51:04.277Z" agent="5.0 (X11)" etag="tdTX7mJTGI1dKBKJk9w0" version="14.7.3" type="device"><diagram id="HvCQlNLg7fWOxGx64C6g" name="Page-1">7Vhtk5MwEP41zOiHOhQKd/14bc+3Uet4zjj6LSVbyDUQDOEo/no3EEp5uempd+qc9kMbHpLd7PNkl6WWu4z3LyRJo7eCArccm+4td2U5znw2xW8NlDXguW4NhJLRGpq2wBX7Bga0DZozCllnohKCK5Z2wUAkCQSqgxEpRdGdthW86zUlIQyAq4DwIfqJURXV6Llz1uIvgYVR43nqz+s7MWkmm0iyiFBRHEHupeUupRCqHsX7JXDNXcNLve75LXcPG5OQqLssEGtv9vHd688rfi2/7L/Iib+7nBgrN4TnJmDL8TnaW0R4yw/1qEGylCQ6DlUacvyvud78YkOCXShFntBJILiQlnuB82S4eeJ4nqW3tcTv3vhpu75x9BIIZUnY+MNQapfdbSA83Fv62zf7RkiINb1plutfWhlDj0zpoxeDqlfjwczwYILK9V0MMGUZC6owbeDMzMqAVjY0yPIsFvpSQZxWNlkSMMponmjTuf7iZIP+9WzV+Ibq0IUJ0W44+5qTZ6eZPOLN6dDlKNhXx0DFHIEpDreM82VN2SoRCdQsV6G4K6+9+ihSBCZIn7soIqbgCnFttcAKgZi4AbnlVSpEjFJIEKsEAX1S9apMSbGDxpfluHb1OWwTDeD2bs2D6SG7sCqBQClkiVOaBecmIU1Fmvrmumjz25kZLOrktgGJqSnhwXabdjgwmfcDWegMslDBLtPKFnBtLT1rvgiYKMo7iNSlzsg0ohyekBCJXwXIGiC+0JwyrHsX5kaM0mg3oxJ25boPUaY9Uc6Gooxp4jyUJO5IYeyRjwU91cMth/2FftQgFZBQM1wFnGSY6V15aiNABw+dk0QdEeGNENFgEjhR7KZrfowd4+G9YFVVMTrMvK4OA4IzkcsAzKrjp03PkOecMKSIDEENDFViHcL+ef1mA/1AlTsGShQkYfB4M2nm/2WZ5P1vMR5Bi/EAQXvTkZj7rcwtOvU7nI3sq7MVVSjbOttaR0ssYAx0yO+gGPrHXxLrxEw2WTp6ba9Pz7nLmtswezFZrd+sP+Do1WG0PmKijqwb7TD+/z3fUVH0vDv0fP5Yzzd7qLLo/5sNxrl7Tw3G3P6zDcbZQL9Uikzp0lWUVGzKQHcZdtXI54+33Tif/WXtxnygS/+R8jNF7z5Zf9BKN+/nl+0N9Jj/Tj2aF7sjQYry8FILwwfYk6LUOSNJpFt1qHqTrZAxCa7h6eNNpPnZ6UfU4S35F5XDy/Z/x7ogtn/eupffAQ==</diagram></mxfile>

BIN
wyk/ie-seqlab.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

BIN
wyk/img-feed-forward.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 21 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 15 KiB

View File

@ -0,0 +1,44 @@
import regex as re
from sklearn.feature_extraction.text import HashingVectorizer
import torch
token_root_len = 7
class Analyzer(object):
def __init__(self):
self.token_pat = re.compile(r'(?:\p{L}|\d)+')
def __call__(self, doc):
return [tok[0:token_root_len] for tok in self.token_pat.findall(doc)]
# hiperparametr - liczba bitów hasza
vector_length = 2**18
vectorizer = HashingVectorizer(n_features=vector_length, analyzer=Analyzer())
midpoint = 1913.0
def vectorize_text(content):
# musimy przekonwertować macierz sklearn => macierz numpy => tensor pytorcha
return (torch.from_numpy(vectorizer.fit_transform([content]).toarray()))[0]
def vectorize_batch(contents):
# musimy przekonwertować macierz sklearn => macierz numpy => tensor pytorcha
return (torch.from_numpy(vectorizer.fit_transform(contents).toarray()))
def process_line(line):
fields = line.strip('\n').split('\t')
year_from, year_to, _, _, content = fields
# normalizujemy lata do wartości (-1,1)
year_normalized = ((float(year_from) + float(year_to)) / 2 - midpoint) / 100.0
return (content, torch.tensor(year_normalized))

View File

@ -0,0 +1,41 @@
import regex as re
from sklearn.feature_extraction.text import HashingVectorizer
import torch
token_root_len = 7
class Analyzer(object):
def __init__(self):
self.token_pat = re.compile(r'(?:\p{L}|\d)+')
def __call__(self, doc):
return [tok[0:token_root_len] for tok in self.token_pat.findall(doc)]
# hiperparametr - liczba bitów hasza
vector_length = 2**18
vectorizer = HashingVectorizer(n_features=vector_length, analyzer=Analyzer())
def vectorize_text(content):
# musimy przekonwertować macierz sklearn => macierz numpy => tensor pytorcha
return (torch.from_numpy(vectorizer.fit_transform([content]).toarray()))[0]
def vectorize_batch(contents):
# musimy przekonwertować macierz sklearn => macierz numpy => tensor pytorcha
return (torch.from_numpy(vectorizer.fit_transform(contents).toarray()))
def process_line(line):
fields = line.strip('\n').split('\t')
label, content = fields
# normalizujemy lata do wartości (-1,1)
y = float(label)
return (content, torch.tensor(y))

View File

@ -0,0 +1,24 @@
#!/usr/bin/env python3
import sys
from analyzer import midpoint, vectorize_text
import torch
w = torch.load('model.bin')
def model(w, x):
return x @ w
for line in sys.stdin:
line = line.strip('\n')
content = line
x = vectorize_text(content)
y_hat = model(w, x)
# na wyjściu musimy mieć z powrotem rok
print(max(1814.0, min(2013.999, y_hat.item() * 100.0 + midpoint)))

View File

@ -0,0 +1,68 @@
#!/usr/bin/env python3
import sys
import torch
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_text
# Nasz model to zestaw wag w. Na koniec dojdziemy do modeli
# Transformer o wielu milionach wag; w pewnym sensie algorytm
# uczenia się nie zmieni.
# W naszym zadaniu lepiej zacząć od zerowych wag zamiast losowych.
# Znaczenie `requires_grad` zostanie omówione w kolejnym skrypcie.
w = torch.zeros(vector_length, dtype=torch.double, requires_grad=False)
# Hiperparametr uczenia
learning_rate = torch.tensor(.0032, dtype=torch.double)
def model(w, x):
# @ to iloczyn wektorów/macierzy w PyTorchu
return x @ w
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return (y_hat - y_exp)**2
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 5000
i = 1
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
for line in sys.stdin:
content, y_exp = process_line(line)
x = vectorize_text(content)
# wartość z predykcji
y_hat = model(w, x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
# Obliczamy gradient i aktualizujemy wagi.
# TU SIĘ ODBYWA UCZENIE!
grad = (y_hat - y_exp)
w = w - learning_rate * x * grad
# (Niedogodność tej wersji: jeśli zmienimy model lub funkcję kosztu,
# będziemy musieli zróżniczkować wszystko i ustalić formułę na grad.
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
closs += loss
if i % step == 0:
print("Sample item: ", y_exp.item(), " => ", y_hat.item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(w, "model.bin")

View File

@ -0,0 +1,23 @@
#!/usr/bin/env python3
import sys
from analyzer import vectorizer
import torch
w = torch.load('model.bin')
def fun(w, x):
return x @ w
for line in sys.stdin:
line = line.strip('\n')
content = line
x = (torch.from_numpy(vectorizer.fit_transform([content]).toarray()))[0]
y_hat = fun(w, x)
print(max(1814.0, min(2013.999, y_hat.item() * 100.0 + 1913.0)))

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
# To samo co linear0.py tylko z automatycznym różniczkowaniem
import sys
import torch
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_text
# Nasz model to zestaw wag w. Na koniec dojdziemy do modeli
# Transformer o wielu milionach wag; w pewnym sensie algorytm
# uczenia się nie zmieni.
# W naszym zadaniu lepiej zacząć od zerowych wag zamiast losowych.
# Tym razem zaznaczamy, że względem w będziemy różniczkować
w = torch.zeros(vector_length, dtype=torch.double, requires_grad=True)
# Hiperparametr uczenia
learning_rate = torch.tensor(.0032, dtype=torch.double)
def model(w, x):
# @ to iloczyn wektorów/macierzy w PyTorchu
return x @ w
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return (y_hat - y_exp)**2
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 5000
i = 1
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
for line in sys.stdin:
content, y_exp = process_line(line)
x = vectorize_text(content)
# wartość z predykcji
y_hat = model(w, x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
w = w - learning_rate * w.grad
closs += loss
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp.item(), " => ", y_hat.item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
i += 1
# ponownie ustawiamy (i zerujemy) wagi
w.requires_grad_(True)
# serializujemy nasz model
torch.save(w, "model.bin")

View File

@ -0,0 +1,70 @@
#!/usr/bin/env python3
# To samo co linear0.py tylko z automatycznym różniczkowaniem
import sys
import torch
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_text
# Nasz model to zestaw wag w. Na koniec dojdziemy do modeli
# Transformer o wielu milionach wag; w pewnym sensie algorytm
# uczenia się nie zmieni.
# W naszym zadaniu lepiej zacząć od zerowych wag zamiast losowych.
# Tym razem zaznaczamy, że względem w będziemy różniczkować
w = torch.zeros(vector_length, dtype=torch.double, requires_grad=True)
# Hiperparametr uczenia
learning_rate = torch.tensor(.0032, dtype=torch.double)
def model(w, x):
# @ to iloczyn wektorów/macierzy w PyTorchu
return torch.tanh(x @ w)
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return (y_hat - y_exp)**2
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 5000
i = 1
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
for line in sys.stdin:
content, y_exp = process_line(line)
x = vectorize_text(content)
# wartość z predykcji
y_hat = model(w, x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
w = w - learning_rate * w.grad
closs += loss
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp.item(), " => ", y_hat.item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
i += 1
# ponownie ustawiamy (i zerujemy) wagi
w.requires_grad_(True)
# serializujemy nasz model
torch.save(w, "model.bin")

View File

@ -0,0 +1,72 @@
#!/usr/bin/env python3
# To samo co linear0.py tylko z automatycznym różniczkowaniem
import sys
import torch
from torch import optim
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_text
# Nasz model to zestaw wag w. Na koniec dojdziemy do modeli
# Transformer o wielu milionach wag; w pewnym sensie algorytm
# uczenia się nie zmieni.
# W naszym zadaniu lepiej zacząć od zerowych wag zamiast losowych.
# Tym razem zaznaczamy, że względem w będziemy różniczkować
w = torch.zeros(vector_length, dtype=torch.double, requires_grad=True)
# Tym razem użyjemy optymalizatora
optimizer = optim.SGD([w], lr=.0064)
def model(w, x):
# @ to iloczyn wektorów/macierzy w PyTorchu
return x @ w
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return (y_hat - y_exp)**2
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 5000
i = 1
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
for line in sys.stdin:
optimizer.zero_grad()
content, y_exp = process_line(line)
x = vectorize_text(content)
# wartość z predykcji
y_hat = model(w, x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
closs += loss
# Optymalizator automagicznie zadba o aktualizację wag!
optimizer.step()
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp.item(), " => ", y_hat.item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(w, "model.bin")

View File

@ -0,0 +1,20 @@
#!/usr/bin/env python3
import sys
from analyzer import midpoint, vectorize_text
import torch
model = torch.load('model.bin')
for line in sys.stdin:
line = line.strip('\n')
content = line
x = vectorize_text(content)
y_hat = model(x)
# na wyjściu musimy mieć z powrotem rok
print(max(1814.0, min(2013.999, y_hat.item() * 100.0 + midpoint)))

View File

@ -0,0 +1,64 @@
#!/usr/bin/env python3
# To samo co linear0.py tylko z automatycznym różniczkowaniem
import sys
import torch
from torch import optim
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_text
from my_linear_regressor import MyLinearRegressor
regressor = MyLinearRegressor(vector_length)
# Tym razem użyjemy optymalizatora
optimizer = optim.SGD(regressor.parameters(), lr=.0064)
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return (y_hat - y_exp)**2
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 5000
i = 1
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
for line in sys.stdin:
optimizer.zero_grad()
content, y_exp = process_line(line)
x = vectorize_text(content)
# wartość z predykcji
y_hat = regressor(x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
closs += loss
# Optymalizator automagicznie zadba o aktualizację wag!
optimizer.step()
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp.item(), " => ", y_hat.item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(regressor, "model.bin")

View File

@ -0,0 +1,81 @@
#!/usr/bin/env python3
# Wprowadzamy minibatche
import sys
import torch
from torch import optim
import itertools
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_batch
from my_linear_regressor import MyLinearRegressor
regressor = MyLinearRegressor(vector_length)
# Rozmiar minibatcha
batch_size = 16
# Pomocnicza funkcja do batchowania
def grouper(n, iterable):
it = iter(iterable)
while True:
chunk = tuple(itertools.islice(it, n))
if not chunk:
return
yield chunk
# Tym razem użyjemy optymalizatora
optimizer = optim.Adam(regressor.parameters())
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return torch.sum((y_hat - y_exp)**2) / batch_size
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 500
i = 1
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
for batch in grouper(batch_size, sys.stdin):
t = [process_line(line) for line in batch]
contents = [entry[0] for entry in t]
# y_exp będzie teraz wektorem!
y_exp = torch.tensor([entry[1] for entry in t], dtype=torch.double)
optimizer.zero_grad()
x = vectorize_batch(contents)
# wartość z predykcji (też wektor!)
y_hat = regressor(x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
closs += loss
# Optymalizator automagicznie zadba o aktualizację wag!
optimizer.step()
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp[0].item(), " => ", y_hat[0].item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(regressor, "model.bin")

View File

@ -0,0 +1,64 @@
#!/usr/bin/env python3
# To samo co linear0.py tylko z automatycznym różniczkowaniem
import sys
import torch
from torch import optim
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_text
from my_linear_regressor import MyLinearRegressor
regressor = MyLinearRegressor(vector_length)
# Tym razem użyjemy optymalizatora
optimizer = optim.Adam(regressor.parameters())
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return (y_hat - y_exp)**2
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 5000
i = 1
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
for line in sys.stdin:
optimizer.zero_grad()
content, y_exp = process_line(line)
x = vectorize_text(content)
# wartość z predykcji
y_hat = regressor(x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
closs += loss
# Optymalizator automagicznie zadba o aktualizację wag!
optimizer.step()
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp.item(), " => ", y_hat.item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.double, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(regressor, "model.bin")

View File

@ -0,0 +1,81 @@
#!/usr/bin/env python3
# Wprowadzamy minibatche
import sys
import torch
from torch import optim
import itertools
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_batch
from my_linear_regressor2 import MyLinearRegressor2
# Rozmiar minibatcha
batch_size = 16
regressor = MyLinearRegressor2(vector_length)
# Pomocnicza funkcja do batchowania
def grouper(n, iterable):
it = iter(iterable)
while True:
chunk = tuple(itertools.islice(it, n))
if not chunk:
return
yield chunk
# Tym razem użyjemy optymalizatora
optimizer = optim.Adam(regressor.parameters())
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return torch.sum((y_hat - y_exp)**2) / batch_size
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 500
i = 1
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
for batch in grouper(batch_size, sys.stdin):
t = [process_line(line) for line in batch]
contents = [entry[0] for entry in t]
# y_exp będzie teraz wektorem!
y_exp = torch.tensor([entry[1] for entry in t], dtype=torch.float)
optimizer.zero_grad()
x = vectorize_batch(contents).float()
# wartość z predykcji (też wektor!)
y_hat = regressor(x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
closs += loss
# Optymalizator automagicznie zadba o aktualizację wag!
optimizer.step()
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp[0].item(), " => ", y_hat[0].item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(regressor, "model.bin")

View File

@ -0,0 +1,81 @@
#!/usr/bin/env python3
# Wprowadzamy minibatche
import sys
import torch
from torch import optim
import itertools
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer import vectorizer, vector_length, process_line, vectorize_batch
from my_neural_network import MyNeuralNetwork
# Rozmiar minibatcha
batch_size = 16
regressor = MyNeuralNetwork(vector_length)
# Pomocnicza funkcja do batchowania
def grouper(n, iterable):
it = iter(iterable)
while True:
chunk = tuple(itertools.islice(it, n))
if not chunk:
return
yield chunk
# Tym razem użyjemy optymalizatora
optimizer = optim.Adam(regressor.parameters())
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return torch.sum((y_hat - y_exp)**2) / batch_size
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 500
i = 1
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
for batch in grouper(batch_size, sys.stdin):
t = [process_line(line) for line in batch]
contents = [entry[0] for entry in t]
# y_exp będzie teraz wektorem!
y_exp = torch.tensor([entry[1] for entry in t], dtype=torch.float)
optimizer.zero_grad()
x = vectorize_batch(contents).float()
# wartość z predykcji (też wektor!)
y_hat = regressor(x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
closs += loss
# Optymalizator automagicznie zadba o aktualizację wag!
optimizer.step()
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp[0].item(), " => ", y_hat[0].item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(regressor, "model.bin")

View File

@ -0,0 +1,81 @@
#!/usr/bin/env python3
# Wprowadzamy minibatche
import sys
import torch
from torch import optim
import itertools
# Preprocessing i wektoryzację tekstów wydzialamy do osobnego modułu,
# z którego będzie korzystał zarówno kod do uczenia, jak i predykcji.
from analyzer_classification import vectorizer, vector_length, process_line, vectorize_batch
from my_neural_network import MyNeuralNetwork
# Rozmiar minibatcha
batch_size = 16
regressor = MyNeuralNetwork(vector_length)
# Pomocnicza funkcja do batchowania
def grouper(n, iterable):
it = iter(iterable)
while True:
chunk = tuple(itertools.islice(it, n))
if not chunk:
return
yield chunk
# Tym razem użyjemy optymalizatora
optimizer = optim.Adam(regressor.parameters())
# Funkcja kosztu.
def loss_fun(y_hat, y_exp):
return torch.sum((y_hat - y_exp)**2) / batch_size
# Co ile kroków będziemy wypisywali informacje o średniej funkcji kosztu.
# To nie jest hiperparametr uczenia, nie ma to żadnego, ani pozytywnego, ani
# negatywnego wpływu na uczenie.
step = 500
i = 1
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
for batch in grouper(batch_size, sys.stdin):
t = [process_line(line) for line in batch]
contents = [entry[0] for entry in t]
# y_exp będzie teraz wektorem!
y_exp = torch.tensor([entry[1] for entry in t], dtype=torch.float)
optimizer.zero_grad()
x = vectorize_batch(contents).float()
# wartość z predykcji (też wektor!)
y_hat = regressor(x)
# wyliczamy funkcję kosztu
loss = loss_fun(y_hat, y_exp)
loss.backward()
with torch.no_grad():
closs += loss
# Optymalizator automagicznie zadba o aktualizację wag!
optimizer.step()
# za jakiś czas pokazujemy uśrednioną funkcję kosztu
if i % step == 0:
print("Sample item: ", y_exp[0].item(), " => ", y_hat[0].item(),
" | Avg loss: ", (closs / step).item())
closs = torch.tensor(0.0, dtype=torch.float, requires_grad=False)
i += 1
# serializujemy nasz model
torch.save(regressor, "model.bin")

View File

@ -0,0 +1,12 @@
import torch.nn as nn
import torch
class MyLinearRegressor(nn.Module):
def __init__(self, vlen):
super(MyLinearRegressor, self).__init__()
self.register_parameter(name='w', param=torch.nn.Parameter(
torch.zeros(vlen, dtype=torch.double, requires_grad=True)))
def forward(self, x):
return x @ self.w

View File

@ -0,0 +1,10 @@
import torch.nn as nn
class MyLinearRegressor2(nn.Module):
def __init__(self, vlen):
super(MyLinearRegressor2, self).__init__()
self.w = nn.Linear(vlen, 1, bias=False)
def forward(self, x):
return self.w(x).squeeze()

View File

@ -0,0 +1,15 @@
import torch.nn as nn
import torch
class MyNeuralNetwork(nn.Module):
def __init__(self, vlen):
super(MyNeuralNetwork, self).__init__()
self.w1 = nn.Linear(vlen, 1)
self.w2 = nn.Linear(vlen, 1)
self.u1 = torch.nn.Parameter(torch.rand(1, dtype=torch.float, requires_grad=True))
self.u2 = torch.nn.Parameter(torch.rand(1, dtype=torch.float, requires_grad=True))
def forward(self, x):
return self.u1 * torch.nn.functional.tanh(self.w1(x).squeeze()) + self.u2 * torch.nn.functional.tanh(self.w2(x).squeeze())

Some files were not shown because too many files have changed in this diff Show More