SprytnyTraktor/py.py

59 lines
5.2 KiB
Python
Raw Normal View History

2021-04-24 00:04:19 +02:00
import astar
2021-05-31 17:10:14 +02:00
import cart
2021-03-21 12:40:13 +01:00
import definitions
2021-04-09 22:49:58 +02:00
import graph
2021-06-01 02:00:55 +02:00
import image_slicer
import map
2021-05-31 17:10:14 +02:00
import neuralnetwork
2021-06-01 02:00:55 +02:00
import os
2021-03-21 12:40:13 +01:00
import plant
import pygame
import station
2021-05-15 22:41:07 +02:00
import treelearn
2021-05-31 17:10:14 +02:00
pygame.display.set_caption("Smart Cart")
def main():
2021-04-03 11:24:39 +02:00
#tworzenie podstawowych obiektów
map1 = map.Map([])
map1.create_base_map()
2021-06-01 11:16:26 +02:00
move_list = ["rotate_left", "move", "move", "move", "move", "move", "move", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "move", "move", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "rotate_left", "move", "rotate_left", "rotate_left", "rotate_left", "move"] #początkowe ruchy
2021-05-31 17:10:14 +02:00
amount_of_seeds_dict = {"beetroot": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE, "carrot": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE, "potato": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE, "wheat": definitions.CART_AMOUNT_OF_SEEDS_EACH_TYPE}
collected_plants_dict = {"beetroot": 0, "carrot": 0, "potato": 0, "wheat": 0}
2021-05-31 17:10:14 +02:00
fertilizer_dict = {"beetroot": definitions.CART_FERTILIZER, "carrot": definitions.CART_FERTILIZER, "potato": definitions.CART_FERTILIZER, "wheat": definitions.CART_FERTILIZER}
station1 = station.Station(collected_plants_dict)
2021-06-01 11:16:26 +02:00
cart1 = cart.Cart(amount_of_seeds_dict, collected_plants_dict, definitions.CART_DIRECTION_WEST, fertilizer_dict, definitions.CART_FUEL, definitions.CART_WATER_LEVEL, 0 * definitions.BLOCK_SIZE, 0 * definitions.BLOCK_SIZE)
2021-05-31 17:10:14 +02:00
cart1_rect = pygame.Rect(cart1.get_x(), cart1.get_y(), definitions.BLOCK_SIZE, definitions.BLOCK_SIZE)
clock = pygame.time.Clock()
2021-05-16 15:36:53 +02:00
tree = treelearn.treelearn() #tworzenie drzewa decyzyjnego
decision = [0] #początkowa decyzja o braku powrotu do stacji (0)
2021-06-01 02:00:55 +02:00
classes, model = neuralnetwork.create_neural_network() #uczenie sieci neuronowej
2021-06-01 12:39:57 +02:00
random_movement = False
run = True
2021-04-03 11:24:39 +02:00
while run: #pętla główna programu
2021-03-21 12:40:13 +01:00
clock.tick(definitions.FPS)
for event in pygame.event.get():
if event.type == pygame.QUIT:
run = False
2021-05-31 17:10:14 +02:00
map1.draw_window(cart1, cart1_rect)
2021-06-01 12:39:57 +02:00
if not move_list: #jeżeli są jakieś ruchy do wykonania w move_list
pygame.image.save(pygame.display.get_surface(), os.path.join('resources/neural_network/sliced/', 'screen.jpg')) #zrzut obecnego ekranu
image_slicer.slice(os.path.join('resources/neural_network/sliced/', 'screen.jpg'), 100) #pocięcie ekranu na sto części
os.remove('resources/neural_network/sliced/screen.jpg')
2021-06-01 13:11:07 +02:00
istate = graph.Istate(cart1.get_direction(), cart1.get_x() / definitions.BLOCK_SIZE, cart1.get_y() / definitions.BLOCK_SIZE) #stan początkowy wózka (jego orientacja oraz jego aktualne miejsce)
if neuralnetwork.predfield(classes, istate, model) is not False: #jeżeli istnieje jakaś dojrzała roślina
2021-06-01 12:39:57 +02:00
random_movement = False
if decision == [0]: #jeżeli decyzja jest 0 (brak powrotu do stacji) to uprawiaj pole
2021-06-01 13:11:07 +02:00
move_list = (astar.graphsearch([], astar.f, [], neuralnetwork.predfield(classes, istate, model), istate, map1, graph.succ)) #lista z ruchami, które należy po kolei wykonać, astar
2021-06-01 12:39:57 +02:00
else: #jeżeli decyzja jest 1 (powrót do stacji) to wróć do stacji uzupełnić zapasy
move_list = (graph.graphsearch([], [], (0, 0), istate, graph.succ)) #lista z ruchami, które należy po kolei wykonać, graphsearch
else:
random_movement = True
elif move_list: #jeżeli move_list nie jest pusta
2021-05-31 18:16:14 +02:00
cart1.handle_movement(cart1_rect, move_list.pop(0)) #wykonaj kolejny ruch oraz zdejmij ten ruch z początku listy
2021-06-01 12:39:57 +02:00
if random_movement is not False:
2021-05-31 17:10:14 +02:00
cart1.handle_movement_random(cart1_rect) #wykonuj losowe ruchy
2021-05-31 18:16:14 +02:00
cart1.do_work(cart1_rect, map1, station1) #wykonaj pracę na danym polu
decision = treelearn.make_decision(cart1.get_all_amount_of_seeds(), cart1.get_all_collected_plants(), cart1.get_all_fertilizer(), cart1.get_fuel(), tree, cart1.get_water_level()) #podejmij decyzję czy wracać do stacji (0 : NIE, 1 : TAK)
plant.Plant.grow_plants(map1) #zwiększ poziom dojrzałości roślin
pygame.quit()
if __name__ == "__main__":
main()