1
0
mirror of https://github.com/kalmarek/PropertyT.jl.git synced 2024-11-19 15:25:29 +01:00
PropertyT.jl/property(T).jl

195 lines
6.3 KiB
Julia
Raw Normal View History

2016-12-19 15:44:52 +01:00
using JuMP
2017-01-09 00:59:40 +01:00
import Base: rationalize
2017-01-14 15:24:16 +01:00
using GroupAlgebras
2016-12-19 15:44:52 +01:00
2017-02-11 13:33:35 +01:00
function create_product_matrix(basis, limit)
2017-01-13 18:04:20 +01:00
product_matrix = zeros(Int, (limit,limit))
basis_dict = Dict{Array, Int}(x => i
for (i,x) in enumerate(basis))
for i in 1:limit
2017-02-11 13:33:35 +01:00
x_inv::eltype(basis) = inv(basis[i])
for j in 1:limit
w = x_inv*basis[j]
product_matrix[i,j] = basis_dict[w]
# index = findfirst(basis, w)
# index ≠ 0 || throw(ArgumentError("Product is not supported on basis: $w"))
# product_matrix[i,j] = index
2016-12-19 15:44:52 +01:00
end
end
2017-02-11 13:33:35 +01:00
return product_matrix
2016-12-19 15:44:52 +01:00
end
function constraints_from_pm(pm, total_length=maximum(pm))
n = size(pm,1)
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
for j in 1:n
Threads.@threads for i in 1:n
idx = pm[i,j]
push!(constraints[idx], [i,j])
end
end
return constraints
end
function splaplacian_coeff(S, basis, n=length(basis))
result = spzeros(n)
result[1] = float(length(S))
for s in S
ind = findfirst(basis, s)
result[ind] += -1.0
end
return result
end
function laplacian_coeff(S, basis)
return full(splaplacian_coeff(S,basis))
end
2017-01-09 01:01:31 +01:00
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement)
N = size(Δ.product_matrix,1)
2017-01-09 01:01:31 +01:00
const Δ² = Δ*Δ
2016-12-19 15:44:52 +01:00
@assert length(Δ) == length(matrix_constraints)
m = JuMP.Model();
JuMP.@variable(m, A[1:N, 1:N], SDP)
2017-03-13 11:21:08 +01:00
JuMP.@SDconstraint(m, A >= 0)
2017-03-13 11:21:53 +01:00
JuMP.@constraint(m, sum(A[i] for i in eachindex(A)) == 0)
JuMP.@variable(m, κ >= 0.0)
JuMP.@constraint(m, κ <= 0.26)
JuMP.@objective(m, Max, κ)
2016-12-19 15:44:52 +01:00
2016-12-23 00:51:06 +01:00
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
2016-12-19 15:44:52 +01:00
end
return m
end
2017-02-11 13:41:03 +01:00
function solve_SDP(sdp_constraints, Δ, solver; verbose=true)
SDP_problem = create_SDP_problem(sdp_constraints, Δ);
verbose && @show solver
JuMP.setsolver(SDP_problem, solver);
verbose && @show SDP_problem
# @time MathProgBase.writeproblem(SDP_problem, "/tmp/SDP_problem")
solution_status = JuMP.solve(SDP_problem);
2017-01-09 01:01:31 +01:00
verbose && @show solution_status
if solution_status != :Optimal
warn("The solver did not solve the problem successfully!")
2017-01-09 01:01:31 +01:00
end
κ = JuMP.getvalue(JuMP.getvariable(SDP_problem, ))
A = JuMP.getvalue(JuMP.getvariable(SDP_problem, :A))
@show sum(A)
2017-01-09 01:01:31 +01:00
return κ, A
end
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
return Δ*Δ - κ*Δ
end
@everywhere function square_as_elt(vector, elt)
2016-12-23 00:51:06 +01:00
zzz = zeros(elt.coefficients)
2017-01-14 15:24:16 +01:00
zzz[1:length(vector)] = vector
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
# return (new_base_elt*new_base_elt).coefficients
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
end
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
elt::GroupAlgebraElement{T})
2017-02-11 13:44:51 +01:00
n = size(sqrt_matrix,2)
# result = zeros(T, length(elt.coefficients))
result = @parallel (+) for i in 1:n
square_as_elt(sqrt_matrix[:,i], elt)
2016-12-19 15:44:52 +01:00
end
return GroupAlgebraElement{T}(result, elt.product_matrix)
2016-12-19 15:44:52 +01:00
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = view(sqrt_matrix,:,i)
sqrt_corrected[:,i] = col - sum(col)//l
2017-01-09 01:01:31 +01:00
# @assert sum(sqrt_corrected[:,i]) == 0
2016-12-19 15:44:52 +01:00
end
return sqrt_corrected
end
2017-01-09 01:01:31 +01:00
2017-02-26 13:51:20 +01:00
function check_solution{T<:Number}(κ::T, sqrt_matrix::Array{T,2}, Δ::GroupAlgebraElement{T}; verbose=true, augmented=false)
2017-01-14 15:24:16 +01:00
result = compute_SOS(sqrt_matrix, Δ)
if augmented
@assert GroupAlgebras.ɛ(result) == 0//1
end
SOS_diff = EOI(Δ, κ) - result
eoi_SOS_L₁_dist = norm(SOS_diff,1)
if verbose
2017-02-11 13:52:32 +01:00
@show κ
if augmented
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = ", GroupAlgebras.ɛ(SOS_diff))
else
ɛ_dist = Float64(round(GroupAlgebras.ɛ(SOS_diff),12))
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ $ɛ_dist")
end
L₁_dist = Float64(round(eoi_SOS_L₁_dist, 12))
println("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $L₁_dist")
end
distance_to_cone = κ - 2^2*eoi_SOS_L₁_dist
return distance_to_cone
2017-01-09 01:01:31 +01:00
end
2017-01-09 00:59:40 +01:00
function rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end;
2017-02-11 13:46:22 +01:00
(x, tol::Real) = rationalize(BigInt, x, tol=tol)
2017-02-26 13:51:20 +01:00
function _distance_to_positive_cone(Δ::GroupAlgebraElement, κ, A;
tol=10.0^-7, verbose=true)
2017-02-26 13:51:20 +01:00
isapprox(eigvals(A), abs(eigvals(A)), atol=tol) ||
warn("The solution matrix doesn't seem to be positive definite!")
@assert A == Symmetric(A)
A_sqrt = real(sqrtm(A))
2017-02-11 13:52:32 +01:00
2017-02-26 13:51:20 +01:00
println("")
println("Checking in floating-point arithmetic...")
2017-02-26 13:51:20 +01:00
@time fp_distance = check_solution(κ, A_sqrt, Δ, verbose=verbose)
println("Floating point distance (to positive cone) ≈ $(Float64(trunc(fp_distance,8)))")
println("-------------------------------------------------------------")
println("")
if fp_distance 0
return fp_distance
end
2017-02-11 13:52:32 +01:00
println("Checking in rational arithmetic...")
2017-02-26 13:51:20 +01:00
κ_ = (trunc(κ,Int(abs(log10(tol)))), tol)
A_sqrt_, Δ_ = (A_sqrt, tol), (Δ, tol)
@time _distance = check_solution(κ_, A_sqrt_, Δ_, verbose=verbose)
@assert isa(_distance, Rational)
println("Rational distance (to positive cone) ≈ $(Float64(trunc(_distance,8)))")
println("-------------------------------------------------------------")
println("")
if _distance 0
return _distance
end
2017-02-11 13:52:32 +01:00
println("Projecting columns of A_sqrt to the augmentation ideal...")
A_sqrt__aug = correct_to_augmentation_ideal(A_sqrt_)
2017-02-26 13:51:20 +01:00
@time _dist_to_Σ² = check_solution(κ_, A_sqrt__aug, Δ_, verbose=verbose, augmented=true)
@assert isa(_dist_to_Σ², Rational)
println("Augmentation-projected rational distance (to positive cone)")
println("$(Float64(trunc(_dist_to_Σ²,8))) ≤ κ(G,S)")
println("-------------------------------------------------------------")
return _dist_to_Σ²
end