PropertyT.jl/property(T).jl

199 lines
6.1 KiB
Julia
Raw Normal View History

2016-12-19 15:44:52 +01:00
using JuMP
2017-01-09 00:59:40 +01:00
import Base: rationalize
2017-01-14 15:24:16 +01:00
using GroupAlgebras
2016-12-19 15:44:52 +01:00
2017-02-11 13:31:01 +01:00
function products{T}(U::AbstractVector{T}, V::AbstractVector{T})
result = Vector{T}()
for u in U
for v in V
push!(result, u*v)
end
end
return unique(result)
end
2016-12-19 15:44:52 +01:00
2017-02-11 13:33:35 +01:00
function create_product_matrix(basis, limit)
2017-01-13 18:04:20 +01:00
product_matrix = zeros(Int, (limit,limit))
for i in 1:limit
2017-02-11 13:33:35 +01:00
x_inv::eltype(basis) = inv(basis[i])
for j in 1:limit
w = x_inv*basis[j]
index = findfirst(basis, w)
2017-02-11 13:33:35 +01:00
index 0 || throw(ArgumentError("Product is not supported on basis: $w"))
product_matrix[i,j] = index
2016-12-19 15:44:52 +01:00
end
end
2017-02-11 13:33:35 +01:00
return product_matrix
2016-12-19 15:44:52 +01:00
end
function constraints_from_pm(pm, total_length=maximum(pm))
n = size(pm,1)
constraints = constraints = [Array{Int,1}[] for x in 1:total_length]
for j in 1:n
Threads.@threads for i in 1:n
idx = pm[i,j]
push!(constraints[idx], [i,j])
end
end
return constraints
end
function splaplacian_coeff(S, basis, n=length(basis))
result = spzeros(n)
result[1] = length(S)
for s in S
ind = findfirst(basis, s)
result[ind] += -1
end
return result
end
function laplacian_coeff(S, basis)
return full(splaplacian_coeff(S,basis))
end
2017-01-09 01:01:31 +01:00
function create_SDP_problem(matrix_constraints, Δ::GroupAlgebraElement)
N = size(Δ.product_matrix,1)
2017-01-09 01:01:31 +01:00
const Δ² = Δ*Δ
2016-12-19 15:44:52 +01:00
@assert length(Δ) == length(matrix_constraints)
m = JuMP.Model();
JuMP.@variable(m, A[1:N, 1:N], SDP)
JuMP.@SDconstraint(m, A >= zeros(size(A)))
JuMP.@variable(m, κ >= 0.0)
JuMP.@objective(m, Max, κ)
2016-12-19 15:44:52 +01:00
2016-12-23 00:51:06 +01:00
for (pairs, δ², δ) in zip(matrix_constraints, Δ².coefficients, Δ.coefficients)
JuMP.@constraint(m, sum(A[i,j] for (i,j) in pairs) == δ² - κ*δ)
2016-12-19 15:44:52 +01:00
end
return m
end
2017-02-11 13:41:03 +01:00
function solve_SDP(sdp_constraints, Δ, solver; verbose=true)
SDP_problem = create_SDP_problem(sdp_constraints, Δ);
verbose && @show solver
JuMP.setsolver(SDP_problem, solver);
verbose && @show SDP_problem
# @time MathProgBase.writeproblem(SDP_problem, "/tmp/SDP_problem")
solution_status = JuMP.solve(SDP_problem);
2017-01-09 01:01:31 +01:00
verbose && @show solution_status
if solution_status != :Optimal
throw(ExceptionError("The solver did not solve the problem successfully!"))
else
2017-02-11 13:41:03 +01:00
κ = SDP_problem.objVal;
A = JuMP.getvalue(JuMP.getvariable(SDP_problem, :A));;
2017-01-09 01:01:31 +01:00
end
return κ, A
end
function EOI{T<:Number}(Δ::GroupAlgebraElement{T}, κ::T)
return Δ*Δ - κ*Δ
end
function square_as_elt(vector, elt)
2016-12-23 00:51:06 +01:00
zzz = zeros(elt.coefficients)
2017-01-14 15:24:16 +01:00
zzz[1:length(vector)] = vector
# new_base_elt = GroupAlgebraElement(zzz, elt.product_matrix)
# return (new_base_elt*new_base_elt).coefficients
return GroupAlgebras.algebra_multiplication(zzz, zzz, elt.product_matrix)
end
function compute_SOS{T<:Number}(sqrt_matrix::Array{T,2},
elt::GroupAlgebraElement{T})
2017-02-11 13:44:51 +01:00
n = size(sqrt_matrix,2)
# result = zeros(T, length(elt.coefficients))
result = @parallel (+) for i in 1:n
square_as_elt(sqrt_matrix[:,i], elt)
2016-12-19 15:44:52 +01:00
end
return GroupAlgebraElement{T}(result, elt.product_matrix)
2016-12-19 15:44:52 +01:00
end
function correct_to_augmentation_ideal{T<:Rational}(sqrt_matrix::Array{T,2})
sqrt_corrected = similar(sqrt_matrix)
l = size(sqrt_matrix,2)
for i in 1:l
col = view(sqrt_matrix,:,i)
sqrt_corrected[:,i] = col - sum(col)//l
2017-01-09 01:01:31 +01:00
# @assert sum(sqrt_corrected[:,i]) == 0
2016-12-19 15:44:52 +01:00
end
return sqrt_corrected
end
2017-01-09 01:01:31 +01:00
function check_solution(κ, sqrt_matrix, Δ; verbose=true, augmented=false)
2017-01-14 15:24:16 +01:00
result = compute_SOS(sqrt_matrix, Δ)
if augmented
@assert GroupAlgebras.ɛ(result) == 0//1
end
SOS_diff = EOI(Δ, κ) - result
eoi_SOS_L₁_dist = norm(SOS_diff,1)
if verbose
2017-02-11 13:52:32 +01:00
@show κ
if augmented
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) = ", GroupAlgebras.ɛ(SOS_diff))
else
ɛ_dist = Float64(round(GroupAlgebras.ɛ(SOS_diff),12))
println("ɛ(Δ² - κΔ - ∑ξᵢ*ξᵢ) ≈ $ɛ_dist")
end
L₁_dist = Float64(round(eoi_SOS_L₁_dist, 12))
println("‖Δ² - κΔ - ∑ξᵢ*ξᵢ‖₁ ≈ $L₁_dist")
end
distance_to_cone = 2^3*eoi_SOS_L₁_dist - κ
return distance_to_cone
2017-01-09 01:01:31 +01:00
end
2017-01-09 00:59:40 +01:00
function rationalize{T<:Integer, S<:Real}(::Type{T},
X::AbstractArray{S}; tol::Real=eps(eltype(X)))
r(x) = rationalize(T, x, tol=tol)
return r.(X)
end;
2017-02-11 13:46:22 +01:00
(x, tol::Real) = rationalize(BigInt, x, tol=tol)
function _distance_to_positive_cone(Δ::GroupAlgebraElement,
κ::Float64,
A::Array{Float64,2};
tol=10.0^-7,
verbose=true)
@show maximum(A)
if maximum(A) < 1e-2
2017-02-11 13:52:32 +01:00
warn("Solver might not solved the problem successfully and the positive solution is due to floating-point error, proceeding anyway...")
end
@assert isapprox(eigvals(A), abs(eigvals(A)), atol=TOL)
@assert A == Symmetric(A)
A_sqrt = real(sqrtm(A))
2017-02-11 13:52:32 +01:00
println("")
println("Checking in floating-point arithmetic...")
fp_distance = check_solution(κ, A_sqrt, Δ, verbose=VERBOSE)
println("Distance to positive cone ≈ $(Float64(trunc(fp_distance,8)))")
println("-------------------------------------------------------------")
println("")
2017-02-11 13:52:32 +01:00
println("Checking in rational arithmetic...")
κ_ = (trunc(κ,Int(abs(log10(tol)))), TOL)
@assert κ - κ_ 0
A_sqrt_, Δ_ = (A_sqrt, TOL), (Δ, TOL)
_distance = check_solution(κ_, A_sqrt_, Δ_, verbose=VERBOSE)
@assert isa(_distance, Rational)
println("Distance to positive cone ≈ $(Float64(trunc(_distance,8)))")
println("-------------------------------------------------------------")
println("")
2017-02-11 13:52:32 +01:00
println("Projecting columns of A_sqrt to the augmentation ideal...")
A_sqrt__aug = correct_to_augmentation_ideal(A_sqrt_)
_dist_to_Σ² = check_solution(κ_, A_sqrt__aug, Δ_, verbose=VERBOSE, augmented=true)
@assert isa(_dist_to_Σ², Rational)
s = (_dist_to_Σ² < 0? "": "")
println("Distance to positive cone $s $(Float64(trunc(_dist_to_Σ²,8)))")
return _dist_to_Σ²
end