Compare commits

...

7 Commits

30 changed files with 1632 additions and 1552 deletions

67
425307.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 425307
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [69.2, 73.1, 40.7, 52.1, 28.1, 78.0, 22.2, 56.9, 12.8, 50.2, 21.4, 60.5, 35.2, 30.8]`
`Prowadzący: [75.4, 37.5, 72.9, 47.4, 50.8, 60.9, 100.0, 46.9, 18.2, 57.1, 19.9, 60.0, 93.1, 68.4]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 5, 3, 4, 5, 3, 3, 5, 5, 5, 5, 3, 5, 3, 4, 3]`
* dla `XYZ`: `[4, 3, 5, 4, 4, 5, 3, 3, 4, 3, 4, 7, 4, 5, 3, 4]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `35%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `35%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

133
433241.md
View File

@ -3,91 +3,88 @@ ID_testu: 433241
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[6, 0, 4, 5, 6, 5, 8, 3, 3, 4, 9, 9, 5, 5, 1, 6, 5, 4, 7, 1, 6, 5]` Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[3, 7, 6, 4, 3, 9, 7, 4, 5, 2, 3, 4, 4, 7, 6, 4, 5, 5]` * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 0, 0, 1, 1, 1, 0, 0, 1, 0]
Student 02 : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Student 03 : [1, 0, 0, 0, 0, 1, 0, 0, 1, 1]
Student 04 : [1, 0, 0, 1, 1, 0, 0, 0, 1, 1]
Student 05 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Student 06 : [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Student 07 : [0, 1, 0, 0, 1, 0, 0, 0, 1, 1]
Student 08 : [0, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Student 09 : [1, 0, 1, 0, 0, 1, 0, 0, 1, 0]
Student 10 : [0, 0, 0, 1, 0, 0, 1, 1, 0, 0]
Student 11 : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. ```
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego? * Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 0, 0, 1, 1, 1, 0, 0, 1, 0]
Prowadzący 02 : [0, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 03 : [1, 0, 0, 0, 0, 1, 0, 0, 1, 1]
Prowadzący 04 : [1, 0, 0, 1, 1, 0, 0, 0, 1, 1]
Prowadzący 05 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 06 : [0, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 07 : [0, 1, 0, 0, 1, 0, 0, 0, 1, 1]
Prowadzący 08 : [0, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Prowadzący 09 : [1, 0, 1, 0, 0, 1, 0, 0, 1, 0]
Prowadzący 10 : [0, 0, 0, 1, 0, 0, 1, 1, 0, 0]
Prowadzący 11 : [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Z pól po lewej stronie drogi zebrano > `TAK` stanowi `64%` wszystkich odpowiedzi.
`[2.85, 3.32, 3.02, 2.72, 2.57, 3.75, 3.44, 3.05, 3.26, 2.6]` 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował > `TAK` stanowi nie więcej niż `64%` wszystkich odpowiedzi.
`[3.12, 3.49, 3.28, 4.22, 3.47, 3.63, 4.0, 3.22, 3.41, 3.59, 3.63, 2.54, 4.32]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.54, 3.34, 3.34, 4.18, 3.17, 3.16, 3.08, 3.68, 4.25, 3.35, 3.2, 2.65, 2.94]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[46.81, 47.28, 40.26, 47.12, 46.53, 42.1, 46.7, 47.12, 49.65, 47.2, 48.07, 48.75, 47.96, 47.72, 47.27, 39.33, 43.97, 45.51, 47.18, 44.95, 46.19, 41.06, 44.72, 48.54, 46.94, 46.99, 46.41]` * `A = [63.3, 41.5, 45.5, 59.5, 50.5, 41.7, 37.2, 72.6, 63.1, 51.5, 57.7, 38.1, 43.5, 49.9]`
* `B = [57.5, 68.2, 59.7, 61.5, 65.7, 56.8, 59.0, 61.0, 61.5]`
Po podaniu leku XYZ wyniki były następujące: Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[49.74, 48.19, 35.76, 49.13, 44.46, 34.89, 39.9, 48.7, 53.28, 51.82, 51.61, 50.34, 49.88, 51.78, 49.59, 37.21, 36.83, 47.73, 47.86, 49.66, 47.97, 34.37, 37.62, 53.0, 48.9, 52.85, 50.96]` * `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy? 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Po wykonaniu analizy okazało się, że grupa liczyła 7 kobiet i 20 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[41.06, 43.97, 42.1, 40.26, 39.33, 46.7, 44.72]`
- po: `[34.37, 36.83, 34.89, 35.76, 37.21, 39.9, 37.62]`
* Mężczyźni:
- przed: `[47.18, 47.96, 45.51, 46.19, 46.99, 46.53, 48.54, 46.94, 47.27, 48.07, 46.41, 46.81, 47.2, 47.28, 44.95, 48.75, 47.72, 47.12, 47.12, 49.65]`
- po: `[47.86, 49.88, 47.73, 47.97, 52.85, 44.46, 53.0, 48.9, 49.59, 51.61, 50.96, 49.74, 51.82, 48.19, 49.66, 50.34, 51.78, 49.13, 48.7, 53.28]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Zdefiniować czym jest cytat, parafraza, plagiat.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) 1. Czy i kiedy powinno się używać cytatu?
1. Jaka jest hipoteza zerowa? 2. Kiedy parafraza jest dopuszczalną formą pracy?
2. Czy należy użyć testu jedno-, czy dwu-stronnego? 3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)? 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `43` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `436` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `278` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `25` zawodowych sportowców;
* `25` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

67
433305.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433305
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [21.7, 51.9, 75.7, 71.8, 45.9, 30.1, 50.0, 35.6, 49.7, 31.6]`
`Prowadzący: [87.0, 50.7, 30.4, 22.1, 18.0, 69.8, 62.2, 46.2, 52.0, 1.9]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 4, 5, 3, 4, 4, 3, 4, 3, 7, 3, 3, 4, 6, 3, 4, 4, 4, 5]`
* dla `XYZ`: `[4, 4, 5, 6, 4, 6, 5, 5, 5, 4, 3, 5, 5, 4, 5, 5, 4, 4, 5, 5]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `48%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `48%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433355.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433355
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [54.8, 56.5, 58.4, 10.1, 35.9, 24.5, 35.1, 72.7, 73.3, 34.0, 80.1, 45.0, 24.5, 79.8, 27.7, 20.7, 37.1, 32.3, 22.7]`
`Prowadzący: [52.3, 55.8, 13.6, 18.3, 29.9, 32.0, 34.8, 31.4, 49.1, 55.0, 39.3, 66.3, 40.4, 72.5, 42.8, 32.3, 73.1, 51.3, 62.4]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `19` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 3, 3, 3, 3, 5, 3, 5, 4, 4, 4, 5, 5, 3, 5, 6, 5, 4]`
* dla `XYZ`: `[4, 4, 3, 3, 5, 4, 4, 3, 4, 4, 4, 4, 4, 7, 3, 5, 4, 4, 3]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `55%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `55%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

67
433371.md Normal file
View File

@ -0,0 +1,67 @@
ID_testu: 433371
**Zadanie 1:**
Naukowcy postanowili odpowiedzieć na pytanie:
> Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [34.7, 53.2, 15.6, 45.0, 25.3, 23.0, 67.1, 85.7, 46.1, 28.4, 22.3, 47.0, 63.7, 37.0, 78.0, 79.5, 30.8, 58.3]`
`Prowadzący: [53.4, 45.2, 43.8, 53.6, 29.6, 93.6, 61.2, 54.8, 53.7, 70.0, 0.0, 40.6, 62.2, 54.7, 39.9, 35.9, 55.6, 20.5]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:**
[Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 4, 6, 5, 3, 4, 3, 6, 4, 4, 5, 3, 4, 4, 3, 3]`
* dla `XYZ`: `[3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3]`
0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
> Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
**Zadanie 3:**
Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `49%` wszystkich odpowiedzi.
1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `49%` wszystkich odpowiedzi.
**Zadanie 4:**
Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
* `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
* `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?

105
433374.md
View File

@ -3,88 +3,65 @@ ID_testu: 433374
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[83, 153, 108, 82, 80, 49, 116, 70, 54, 58, 82, 103, 143, 74, 147, 123, 125, 135, 137, 103, 103, 92, 130, 87, 147, 92, 119, 114, 125, 112]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [38.7, 37.9, 17.1, 62.0, 31.0, 20.0, 23.0, 39.3, 53.1, 79.6]`
`Prowadzący: [33.4, 82.2, 66.2, 67.5, 74.6, 75.9, 53.1, 53.2, 45.5, 71.0]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Z pól po lewej stronie drogi zebrano
`[2.8, 3.72, 3.13, 2.77, 2.76, 2.34, 3.24, 2.62, 2.4, 2.46, 2.79, 3.06, 3.59]` Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 5, 3, 4, 3, 5, 3, 5, 4, 4, 4, 3, 5, 4, 4, 4, 3, 5]`
* dla `XYZ`: `[4, 4, 5, 3, 4, 4, 3, 5, 3, 4, 4, 7, 6, 5, 6, 4, 5, 3]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.92, 4.63, 4.07, 4.11, 4.36, 4.41, 3.61, 3.61, 3.34, 4.24, 3.22, 4.63, 3.34, 3.98]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.56, 3.75, 3.53, 2.4, 2.44, 3.09, 2.76, 3.95, 3.47, 3.33, 3.8, 3.37, 2.9, 4.1]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `44%` wszystkich odpowiedzi.
`[48.94, 48.85, 38.25, 49.41, 48.31, 48.58, 40.49, 37.88, 49.22, 46.66, 45.76, 42.81, 46.66, 38.63, 46.41, 46.52, 46.2, 47.77, 47.24, 43.49, 48.04, 48.22, 39.63, 40.74, 49.42, 47.23, 40.59, 47.23]` 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
Po podaniu leku XYZ wyniki były następujące: > `TAK` stanowi nie więcej niż `44%` wszystkich odpowiedzi.
`[52.25, 50.08, 32.64, 53.41, 51.65, 49.03, 33.56, 30.03, 55.88, 47.67, 48.92, 32.79, 46.29, 34.83, 46.96, 40.45, 49.72, 50.65, 52.86, 39.58, 56.3, 53.02, 34.36, 36.43, 56.37, 49.81, 31.05, 48.92]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 10 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[40.74, 46.52, 42.81, 40.59, 40.49, 37.88, 43.49, 39.63, 38.25, 38.63]`
- po: `[36.43, 40.45, 32.79, 31.05, 33.56, 30.03, 39.58, 34.36, 32.64, 34.83]`
* Mężczyźni:
- przed: `[46.2, 47.23, 49.22, 45.76, 49.41, 48.22, 48.31, 48.85, 48.94, 47.23, 47.24, 46.66, 48.58, 46.41, 49.42, 46.66, 48.04, 47.77]`
- po: `[49.72, 48.92, 55.88, 48.92, 53.41, 53.02, 51.65, 50.08, 52.25, 49.81, 52.86, 46.29, 49.03, 46.96, 56.37, 47.67, 56.3, 50.65]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+7.0 %` wagi,
* `+15.6 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[289, 264, 262, 232, 297, 252, 237, 241, 265, 285, 323, 256, 327, 304, 305, 316, 318, 284, 285]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `18` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

106
433383.md
View File

@ -3,89 +3,65 @@ ID_testu: 433383
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[96, 96, 144, 111, 133, 94, 89, 102, 111, 140, 151, 123, 144, 61, 85, 111, 52, 153, 83, 78, 103, 113]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [51.3, 66.0, 40.2, 36.8, 45.1, 51.2, 70.5, 77.6, 59.0, 73.1, 17.7, 34.1, 51.0, 12.0, 79.3, 32.8, 29.0, 45.9, 52.7, 79.6]`
`Prowadzący: [68.2, 43.2, 47.4, 19.8, 29.8, 55.0, 46.5, 47.9, 47.1, 100.0, 55.4, 75.8, 79.9, 44.2, 42.5, 38.4, 6.9, 9.0, 49.4, 85.5]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 5 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 5, 4, 4, 3]`
* dla `XYZ`: `[4, 4, 4, 3, 6, 4, 3, 3, 3, 3, 3, 3, 4, 4, 5, 3, 3, 5, 3, 4]`
`[7.8, 7.8, 15.8, 10.3, 14.0, 7.5, 6.7, 8.8]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[10.3, 15.1, 16.9, 12.3, 15.8, 2.0, 6.0, 10.3]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[2.0, 17.3, 5.7, 4.8, 9.0, 10.7, 17.4, 14.5]`
`[8.3, 9.3, 2.5, 5.0, 11.3, 9.1, 9.5, 9.3]`
`[24.4, 11.4, 16.5, 17.5, 8.6, 8.1, 7.1, 2.0]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[12.4, 19.6, 15.4, 14.9, 11.8, 7.7, 17.1, 11.3]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `17%` wszystkich odpowiedzi.
`[49.2, 47.08, 40.34, 49.22, 45.49, 40.88, 46.69, 44.74, 45.45, 48.73, 45.43, 44.15, 44.92, 44.58, 40.77, 46.8, 45.81, 46.49, 42.15, 46.74, 48.36, 42.16, 40.9, 47.21, 47.38, 44.0, 45.71, 43.13, 44.56, 41.39]` 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
Po podaniu leku XYZ wyniki były następujące: > `TAK` stanowi nie więcej niż `17%` wszystkich odpowiedzi.
`[54.93, 50.03, 33.71, 52.23, 48.78, 34.54, 51.01, 44.02, 34.54, 55.69, 48.15, 44.83, 43.92, 49.13, 37.65, 51.59, 50.2, 49.48, 34.67, 47.27, 52.04, 36.38, 34.48, 50.36, 50.67, 39.98, 48.33, 36.6, 33.57, 34.43]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 12 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[40.88, 40.9, 44.92, 42.16, 44.0, 40.77, 40.34, 41.39, 42.15, 44.56, 45.45, 43.13]`
- po: `[34.54, 34.48, 43.92, 36.38, 39.98, 37.65, 33.71, 34.43, 34.67, 33.57, 34.54, 36.6]`
* Mężczyźni:
- przed: `[48.73, 44.58, 45.81, 47.08, 44.15, 49.2, 45.71, 45.43, 46.69, 47.21, 49.22, 48.36, 46.49, 46.8, 44.74, 45.49, 47.38, 46.74]`
- po: `[55.69, 49.13, 50.2, 50.03, 44.83, 54.93, 48.33, 48.15, 51.01, 50.36, 52.23, 52.04, 49.48, 51.59, 44.02, 48.78, 50.67, 47.27]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+2.8 %` wagi,
* `+12.4 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[315, 282, 304, 265, 260, 273, 282, 311, 321, 294, 315, 232, 256, 282, 223, 324, 254, 249, 274]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

123
433388.md
View File

@ -3,73 +3,88 @@ ID_testu: 433388
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[58, 35, 63, 95, 118, 113, 106, 115, 120, 98, 54, 77, 92, 97, 86, 100, 85, 63, 140, 64, 149, 101, 49, 120]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Student 02 : [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Student 03 : [1, 1, 0, 1, 0, 0, 0, 0, 1, 1]
Student 04 : [0, 1, 1, 0, 0, 0, 0, 0, 1, 0]
Student 05 : [0, 0, 1, 0, 0, 1, 1, 1, 0, 0]
Student 06 : [0, 0, 1, 0, 1, 0, 0, 1, 1, 0]
Student 07 : [1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
Student 08 : [0, 1, 1, 0, 0, 1, 1, 1, 0, 1]
Student 09 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 10 : [0, 1, 1, 1, 0, 0, 0, 0, 0, 1]
Student 11 : [0, 1, 0, 1, 0, 0, 1, 0, 0, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 02 : [0, 0, 1, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 03 : [1, 1, 0, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 04 : [0, 1, 1, 0, 0, 0, 0, 0, 1, 0]
Prowadzący 05 : [0, 0, 1, 0, 0, 1, 1, 1, 0, 0]
Prowadzący 06 : [0, 0, 1, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 07 : [1, 0, 1, 1, 1, 1, 1, 1, 1, 1]
Prowadzący 08 : [0, 1, 1, 0, 0, 1, 1, 1, 0, 1]
Prowadzący 09 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 10 : [0, 1, 1, 1, 0, 0, 0, 0, 0, 1]
Prowadzący 11 : [0, 1, 0, 1, 0, 0, 1, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Na pola wyszło 3 grup studentów. > `TAK` stanowi `42%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[3.3, 2.0, 4.1, 9.3, 13.2, 12.3, 11.2, 12.7, 13.5, 9.9, 2.5, 6.3]` > `TAK` stanowi nie więcej niż `42%` wszystkich odpowiedzi.
`[8.9, 9.7, 7.8, 10.2, 7.7, 4.0, 16.8, 4.2, 18.3, 10.3, 2.0, 13.4]`
`[11.0, 9.1, 9.4, 6.2, 7.3, 7.7, 3.9, 14.3, 8.2, 10.5, 13.0, 4.6]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[12.1, 11.3, 11.8, 17.8, 14.9, 7.0, 15.6, 9.3, 15.1, 12.8, 11.9, 8.4]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 18 meczy każdej z drużn skończyły się następującymi wynikami: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* ABC vs ???:
`0:3, 2:1, 2:2, 3:1, 3:2, 2:2, 0:2, 1:0, 1:3, 1:0, 0:2, 1:3, 2:2, 1:2, 1:2, 2:1, 4:2, 0:1`
* XYZ vs ???:
`3:5, 1:3, 2:3, 2:4, 3:2, 4:2, 2:5, 2:4, 2:4, 2:3, 2:1, 5:1, 0:4, 3:4, 1:3, 5:1, 0:3, 3:3`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? * `A = [42.1, 42.9, 33.8, 24.5, 35.8, 48.3, 57.6, 55.6, 52.8, 56.6, 58.3, 49.8, 32.1, 41.1]`
* `B = [58.2, 59.6, 56.5, 60.2, 56.4, 50.4, 70.9, 50.8, 73.3]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Zdefiniować czym jest cytat, parafraza, plagiat.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+6.7 %` wagi,
* `+16.1 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. 1. Czy i kiedy powinno się używać cytatu?
Dysponujesz już pomiarami wag grupy kontrolnej: 2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
wagi = `[237, 275, 303, 297, 288, 300, 305, 279, 226, 253, 272, 278, 264, 281, 264, 237, 329, 239, 340]` 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `28` zawodowych sportowców;
* `21` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,70 +3,65 @@ ID_testu: 433389
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[109, 63, 81, 75, 68, 145, 115, 108, 78, 96, 97, 82, 105, 112, 106, 107, 150, 72, 129, 36, 49, 104, 92, 80, 122, 115, 53, 70]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [54.6, 37.1, 32.3, 83.5, 63.7, 59.0, 38.6, 50.8, 51.6, 41.4, 56.7, 61.7]`
`Prowadzący: [57.9, 58.0, 87.2, 35.2, 72.6, 10.8, 19.9, 56.0, 48.0, 40.4, 68.1, 63.6]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 4 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 4, 5, 3, 3, 3, 4, 4, 3, 3, 3, 3, 4, 4, 4, 3]`
* dla `XYZ`: `[4, 5, 4, 5, 4, 4, 4, 5, 3, 3, 5, 4, 4, 5, 5, 5]`
`[12.3, 4.7, 7.8, 6.8, 5.6, 18.4, 13.4, 12.3, 7.2, 10.2, 10.4, 7.9, 11.7]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[12.9, 12.0, 12.0, 19.3, 6.3, 15.7, 2.0, 2.5, 11.5, 9.5, 7.6, 14.5, 13.4]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[3.0, 5.9, 18.3, 8.2, 13.1, 17.1, 9.9, 15.0, 14.9, 7.4, 2.0, 2.7, 12.3]`
`[5.6, 2.0, 8.8, 12.2, 2.0, 7.5, 6.2, 7.3, 3.8, 15.8, 20.4, 11.4, 9.1]`
1. Czy pojedynczy student który zebrał `3.3` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[18.7, 11.7, 17.4, 11.0, 16.9, 4.4, 11.8, 4.4, 6.6, 17.3, 17.1, 10.5, 11.4]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 16 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `44%` wszystkich odpowiedzi.
* ABC vs ???:
`1:3, 1:3, 2:2, 2:3, 1:1, 2:1, 1:1, 1:2, 1:0, 0:3, 2:1, 2:1, 2:1, 2:1, 4:4, 2:2`
* XYZ vs ???:
`3:4, 3:5, 4:6, 5:2, 3:3, 3:3, 1:1, 3:2, 1:3, 2:3, 2:5, 3:3, 3:5, 4:1, 1:2, 1:4`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `44%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
1. Jaka jest hipoteza zerowa? * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `44` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `24` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `579` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `275` wyniki. Co mówi to o jego zdolnościach?
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
**Zadanie 5:** * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `16` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ. 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową. 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,74 +3,65 @@ ID_testu: 433390
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[55, 92, 123, 101, 90, 52, 64, 108, 95, 76, 89, 57, 47, 97, 22, 93, 119, 99, 96, 69, 114, 71]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [52.1, 44.8, 19.8, 27.8, 56.9, 48.1, 35.4, 44.2, 23.1, 16.6, 49.7, 0.0, 46.7, 64.3, 50.8, 49.1, 30.8, 61.0]`
`Prowadzący: [32.0, 60.8, 47.2, 44.6, 51.9, 43.1, 57.8, 47.9, 22.4, 38.5, 54.8, 39.7, 32.2, 73.4, 57.0, 51.0, 49.8, 22.0]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 5 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 3, 5, 3, 3, 5, 5, 3, 3, 4, 4, 4, 5, 3, 4, 3, 3, 3, 3, 4]`
* dla `XYZ`: `[3, 4, 6, 7, 3, 7, 4, 5, 3, 3, 4, 5, 3, 4, 3, 6, 3, 3, 3, 5]`
`[2.9, 9.0, 14.3, 10.5, 8.7, 2.5, 4.4, 11.7, 9.5, 6.4]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[8.5, 3.3, 2.0, 9.9, 2.0, 9.2, 13.6, 10.2, 9.8, 5.2]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[12.7, 5.5, 12.7, 9.3, 8.6, 10.5, 8.3, 11.9, 9.5, 3.1]`
`[7.1, 11.2, 7.4, 5.5, 15.9, 11.8, 10.2, 9.9, 3.0, 12.5]`
`[12.4, 9.1, 11.7, 18.9, 15.7, 16.7, 17.7, 12.8, 3.4, 11.5]`
1. Czy pojedynczy student który zebrał `3.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[15.8, 8.8, 12.6, 9.5, 12.2, 9.6, 12.9, 10.1, 11.7, 14.7]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 20 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `37%` wszystkich odpowiedzi.
* ABC vs ???:
`2:1, 2:1, 2:2, 2:3, 0:3, 0:2, 1:1, 1:2, 0:1, 0:0, 2:3, 2:0, 1:1, 2:0, 1:3, 3:1, 0:0, 0:0, 0:2, 2:1`
* XYZ vs ???:
`2:6, 3:2, 2:1, 1:3, 3:1, 2:4, 6:2, 3:5, 0:2, 3:6, 2:6, 1:6, 3:3, 4:7, 2:3, 1:3, 1:1, 1:2, 2:3, 3:1`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `37%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
1. Jaka jest hipoteza zerowa? * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `42` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `528` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `269` wyniki. Co mówi to o jego zdolnościach?
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
**Zadanie 5:** * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `25` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.) 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową. 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,75 +3,65 @@ ID_testu: 433391
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[54, 102, 129, 103, 119, 124, 146, 86, 130, 158, 141, 95, 133, 131, 144, 182, 117, 27, 37, 129, 83, 90, 108, 95, 49, 73, 123, 156, 111, 125]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [46.3, 57.0, 60.4, 74.9, 34.7, 64.4, 82.9, 71.6, 40.6, 66.4, 64.7, 73.4, 98.9, 55.5, 0.0, 2.3, 63.5, 32.9, 37.1, 49.5]`
`Prowadzący: [41.0, 10.1, 26.1, 59.1, 81.2, 51.7, 61.0, 67.2, 48.7, 73.7, 26.3, 67.2, 47.1, 73.2, 86.0, 64.9, 61.8, 64.6, 56.0, 74.3]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 5 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[6, 5, 5, 5, 4, 4, 4, 5, 7, 8, 5, 4, 5, 6, 7, 7, 3, 7, 7, 6]`
* dla `XYZ`: `[4, 5, 3, 5, 3, 3, 4, 6, 4, 4, 4, 4, 4, 5, 5, 4, 6, 6, 5, 3]`
`[2.0, 8.8, 13.3, 9.1, 11.8, 12.6, 16.2, 6.2, 13.6, 18.2]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[15.4, 7.7, 14.1, 13.7, 15.8, 22.2, 11.4, 2.0, 2.0, 13.4]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[5.7, 6.8, 9.9, 7.7, 2.0, 4.0, 12.3, 17.8, 10.4, 12.8]`
`[14.3, 9.7, 15.9, 4.1, 14.3, 9.3, 15.8, 19.0, 13.7, 12.9]`
`[13.6, 11.5, 16.1, 17.7, 10.0, 2.0, 8.5, 9.9, 16.4, 4.9]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[10.4, 7.2, 10.8, 10.4, 6.1, 5.9, 10.1, 14.9, 9.0, 3.0]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 20 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `41%` wszystkich odpowiedzi.
* ABC vs ???:
`3:2, 1:2, 2:0, 0:0, 2:2, 4:1, 1:2, 1:1, 3:0, 1:2, 3:1, 1:3, 0:0, 3:2, 3:0, 3:1, 1:1, 1:1, 3:1, 2:2`
* XYZ vs ???:
`3:2, 3:5, 3:2, 2:3, 4:4, 5:3, 1:5, 2:3, 2:3, 5:4, 4:2, 4:3, 1:5, 2:0, 1:3, 7:5, 5:3, 1:4, 4:2, 1:2`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `41%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+6.5 %` wagi,
* `+18.2 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[301, 274, 291, 297, 320, 255, 303, 333, 315, 265, 306, 304, 317, 358, 289, 193, 204, 302, 253, 259, 279, 266]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `20` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

105
433392.md
View File

@ -3,88 +3,65 @@ ID_testu: 433392
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[132, 46, 92, 111, 94, 134, 105, 79, 94, 166, 158, 138, 123, 105, 102, 123, 87, 141, 73, 126, 106, 55, 105, 102]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [60.5, 48.8, 75.5, 56.5, 38.7, 49.1, 96.7, 91.6, 78.5, 68.2, 56.3, 54.2, 68.6, 44.6, 80.4]`
`Prowadzący: [34.6, 70.5, 56.8, 23.0, 56.0, 54.5, 33.3, 81.8, 39.2, 36.6, 30.5, 62.3, 53.9, 35.4, 48.7]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Z pól po lewej stronie drogi zebrano
`[3.49, 2.34, 2.95, 3.21, 2.98, 3.51, 3.13, 2.77, 2.98, 3.93, 3.83, 3.57, 3.36]` Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 5, 3, 4, 3, 4, 3, 3, 3, 7, 7, 4, 5, 3, 4, 4, 3, 5]`
* dla `XYZ`: `[6, 3, 5, 6, 7, 6, 5, 5, 5, 5, 5, 3, 5, 3, 5, 5, 6, 6]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[3.72, 3.65, 4.15, 3.31, 4.56, 2.96, 4.22, 3.74, 2.55, 3.71, 3.66, 2.91, 4.61, 3.12]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[2.97, 2.81, 3.61, 3.4, 2.93, 3.27, 3.08, 4.23, 2.47, 4.4, 4.07, 3.28, 4.1, 3.07]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `47%` wszystkich odpowiedzi.
`[48.36, 50.12, 43.31, 49.28, 45.19, 45.04, 47.51, 49.14, 40.58, 37.88, 47.45, 42.81, 41.88, 41.67, 45.74, 48.39, 47.31, 41.85, 47.84, 44.97, 47.34, 45.85, 46.59, 47.47, 49.39, 48.54]` 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
Po podaniu leku XYZ wyniki były następujące: > `TAK` stanowi nie więcej niż `47%` wszystkich odpowiedzi.
`[51.65, 58.04, 38.05, 50.06, 36.95, 37.2, 54.2, 55.65, 33.61, 30.86, 50.45, 36.26, 39.31, 33.47, 49.53, 48.38, 49.71, 35.97, 37.35, 50.32, 53.0, 52.46, 47.61, 54.0, 51.24, 53.24]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 10 kobiet i 16 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[45.04, 37.88, 41.67, 43.31, 41.85, 45.19, 42.81, 40.58, 41.88, 47.84]`
- po: `[37.2, 30.86, 33.47, 38.05, 35.97, 36.95, 36.26, 33.61, 39.31, 37.35]`
* Mężczyźni:
- przed: `[50.12, 49.14, 48.36, 47.47, 47.31, 48.39, 46.59, 49.28, 45.85, 48.54, 47.51, 44.97, 47.45, 47.34, 45.74, 49.39]`
- po: `[58.04, 55.65, 51.65, 54.0, 49.71, 48.38, 47.61, 50.06, 52.46, 53.24, 54.2, 50.32, 50.45, 53.0, 49.53, 51.24]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+7.5 %` wagi,
* `+18.4 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[276, 295, 278, 316, 289, 264, 279, 345, 338, 320, 305, 289, 286, 306, 272, 323, 259, 309, 289]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `18` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

139
433393.md
View File

@ -3,87 +3,96 @@ ID_testu: 433393
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[62, 120, 44, 47, 67, 121, 93, 63, 61, 113, 121, 119, 98, 73, 102, 74, 118, 57, 100, 120, 168, -9, 105, 76, 66]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
Student 02 : [1, 0, 1, 1, 0, 0, 0, 1, 0, 1]
Student 03 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
Student 04 : [1, 1, 0, 1, 1, 0, 1, 0, 1, 1]
Student 05 : [1, 0, 0, 0, 1, 0, 1, 1, 1, 0]
Student 06 : [0, 0, 0, 0, 1, 1, 0, 0, 1, 1]
Student 07 : [0, 0, 0, 0, 1, 1, 1, 0, 1, 1]
Student 08 : [0, 0, 0, 1, 0, 1, 0, 1, 1, 1]
Student 09 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Student 10 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 11 : [1, 0, 0, 0, 0, 1, 0, 1, 0, 1]
Student 12 : [1, 0, 0, 0, 1, 0, 1, 0, 0, 1]
Student 13 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Student 14 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Student 15 : [1, 0, 0, 1, 0, 1, 1, 1, 1, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 1, 1, 1, 0, 0, 0, 0]
Prowadzący 02 : [1, 0, 1, 1, 0, 0, 0, 1, 0, 1]
Prowadzący 03 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 1]
Prowadzący 04 : [1, 1, 0, 1, 1, 0, 1, 0, 1, 1]
Prowadzący 05 : [1, 0, 0, 0, 1, 0, 1, 1, 1, 0]
Prowadzący 06 : [0, 0, 0, 0, 1, 1, 0, 0, 1, 1]
Prowadzący 07 : [0, 0, 0, 0, 1, 1, 1, 0, 1, 1]
Prowadzący 08 : [0, 0, 0, 1, 0, 1, 0, 1, 1, 1]
Prowadzący 09 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Prowadzący 10 : [1, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 11 : [1, 0, 0, 0, 0, 1, 0, 1, 0, 1]
Prowadzący 12 : [1, 0, 0, 0, 1, 0, 1, 0, 0, 1]
Prowadzący 13 : [1, 1, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 14 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 15 : [1, 0, 0, 1, 0, 1, 1, 1, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Na pola wyszło 4 grup studentów. > `TAK` stanowi `50%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[5.3, 15.0, 2.3, 2.8, 6.1, 15.1, 10.4, 5.5, 5.1, 13.7, 15.1]` > `TAK` stanowi nie więcej niż `50%` wszystkich odpowiedzi.
`[14.8, 11.2, 7.1, 12.0, 7.3, 14.6, 4.4, 11.7, 15.0, 23.0, 2.0]`
`[12.5, 7.6, 5.9, 19.4, 13.1, 14.9, 4.4, 13.0, 14.0, 17.0, 6.1]`
`[7.2, 15.6, 9.0, 7.2, 18.3, 7.1, 10.0, 8.4, 8.4, 5.6, 9.4]`
1. Czy pojedynczy student który zebrał `10.1` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[16.8, 14.3, 11.4, 11.3, 14.7, 9.2, 3.9, 14.5, 13.4, 16.5, 9.9]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[47.74, 39.65, 48.37, 40.07, 46.13, 47.5, 44.5, 42.02, 46.18, 48.5, 48.44, 49.81, 44.55, 38.39, 47.6, 48.53, 45.54, 38.16, 39.73, 47.36, 42.19, 45.32, 45.78, 48.12, 50.9, 46.27]` * `A = [49.8, 36.8, 38.7, 62.0, 31.6, 32.7, 40.7, 62.3, 50.9, 39.1, 38.3, 59.0, 62.2, 61.5]`
* `B = [61.9, 55.4, 63.2, 55.6, 67.3, 51.0, 62.7, 68.0, 80.8]`
Po podaniu leku XYZ wyniki były następujące: Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[50.5, 34.95, 49.99, 35.65, 49.34, 53.65, 39.8, 44.4, 48.79, 54.03, 55.17, 49.01, 40.68, 33.83, 50.28, 50.79, 50.95, 30.18, 32.66, 49.5, 34.3, 48.25, 47.32, 51.11, 55.36, 50.61]` * `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy? 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Po wykonaniu analizy okazało się, że grupa liczyła 8 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[39.65, 44.5, 38.16, 38.39, 40.07, 44.55, 42.19, 39.73]`
- po: `[34.95, 39.8, 30.18, 33.83, 35.65, 40.68, 34.3, 32.66]`
* Mężczyźni:
- przed: `[45.54, 48.12, 48.53, 48.44, 47.36, 46.13, 47.6, 46.18, 48.37, 45.32, 47.5, 48.5, 50.9, 42.02, 47.74, 46.27, 45.78, 49.81]`
- po: `[50.95, 51.11, 50.79, 55.17, 49.5, 49.34, 50.28, 48.79, 49.99, 48.25, 53.65, 54.03, 55.36, 44.4, 50.5, 50.61, 47.32, 49.01]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Zdefiniować czym jest cytat, parafraza, plagiat.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+8.0 %` wagi,
* `+20.0 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. 1. Czy i kiedy powinno się używać cytatu?
Dysponujesz już pomiarami wag grupy kontrolnej: 2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
wagi = `[255, 307, 238, 241, 259, 308, 282, 255, 254, 300, 307, 306, 287, 264, 291, 265, 305, 250, 289, 307, 350, 190, 293, 267, 258]` 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `26` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

107
433397.md
View File

@ -3,92 +3,65 @@ ID_testu: 433397
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[4, 8, 3, 8, 7, 3, 3, 8, 1, 5, 3, 4, 6, 5, 7, 2, 7, 9, 6, 6]` Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Grupa testowa: `[10, 6, 3, 0, 6, 7, 5, 3, 4, 7, 2, 6, 5, 7, 0, 3, 5]` Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. `Studenci: [11.0, 61.6, 73.6, 55.9, 42.5, 45.9, 65.6, 32.6, 70.6, 55.6, 56.7, 15.8, 42.3, 59.3, 84.8, 62.4, 40.1]`
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku? `Prowadzący: [86.7, 26.9, 58.0, 56.7, 29.3, 31.0, 76.8, 20.5, 64.8, 36.6, 44.9, 57.3, 74.4, 65.6, 19.8, 68.2, 81.3]`
Dlaczego?
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Z pól po lewej stronie drogi zebrano
`[4.08, 3.46, 2.57, 2.22, 3.23, 3.47, 3.12, 2.85, 2.92, 3.31]` Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 4, 3, 4, 4, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4]`
* dla `XYZ`: `[6, 4, 5, 4, 4, 7, 5, 4, 3, 3, 3, 3, 3, 4, 4]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.89, 4.22, 3.7, 3.74, 2.3, 3.23, 3.82, 4.72, 3.93, 3.16, 4.78, 2.69]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.5, 3.47, 2.78, 2.82, 3.97, 2.56, 3.67, 2.97, 3.17, 3.48, 3.91, 3.69]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `52%` wszystkich odpowiedzi.
`[46.42, 47.42, 48.54, 49.61, 47.5, 48.78, 45.27, 44.44, 47.93, 47.6, 48.17, 39.33, 49.75, 42.74, 47.69, 47.5, 46.44, 46.69, 46.26, 45.7, 44.84, 37.13, 43.45, 45.44, 44.95]` 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
Po podaniu leku XYZ wyniki były następujące: > `TAK` stanowi nie więcej niż `52%` wszystkich odpowiedzi.
`[49.41, 50.44, 55.07, 55.24, 50.03, 39.56, 51.44, 48.22, 49.32, 48.72, 48.53, 30.48, 53.45, 37.06, 50.8, 50.92, 52.13, 51.52, 47.64, 50.72, 40.79, 33.04, 35.6, 48.99, 37.7]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 7 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[48.78, 44.84, 39.33, 37.13, 43.45, 44.95, 42.74]`
- po: `[39.56, 40.79, 30.48, 33.04, 35.6, 37.7, 37.06]`
* Mężczyźni:
- przed: `[46.44, 46.69, 48.17, 45.7, 48.54, 47.42, 47.5, 44.44, 46.42, 47.69, 49.61, 47.93, 46.26, 49.75, 45.27, 47.6, 47.5, 45.44]`
- po: `[52.13, 51.52, 48.53, 50.72, 55.07, 50.44, 50.92, 48.22, 49.41, 50.8, 55.24, 49.32, 47.64, 53.45, 51.44, 48.72, 50.03, 48.99]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+8.4 %` wagi,
* `+18.6 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[251, 227, 296, 312, 288, 270, 275, 301, 257, 308, 288, 289, 234, 270, 293, 327, 297]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `15` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,77 +3,65 @@ ID_testu: 433399
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[6, 3, 3, 6, 2, 4, 3, 5, 1, 4, 2, 3, 6, 7, 10, 4, 2, 7, 6, 6]` Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Grupa testowa: `[3, 8, 1, 2, 9, 3, 2, 1, 2, 5, 4, 5, 1, 8, 6, 6, 4, 7, 4, 5]` Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. `Studenci: [37.2, 100.0, 15.7, 23.3, 1.0, 49.6, 57.7, 24.7, 39.6, 18.5, 71.8, 59.9, 65.3, 54.6, 48.4, 59.0]`
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku? `Prowadzący: [52.0, 84.1, 57.4, 46.1, 31.3, 44.2, 66.8, 22.8, 33.6, 32.5, 46.7, 22.8, 48.9, 28.0, 26.7, 57.2]`
Dlaczego?
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Z pól po lewej stronie drogi zebrano
`[2.42, 3.44, 2.51, 2.74, 4.03, 2.31, 2.47, 2.02, 2.99, 3.15]` Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[6, 6, 5, 4, 6, 6, 4, 6, 3, 4, 5, 4, 5, 4, 4]`
* dla `XYZ`: `[4, 4, 4, 4, 7, 3, 5, 5, 4, 3, 3, 5, 4, 3, 4]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.61, 3.13, 2.4, 4.26, 3.85, 4.03, 3.66, 3.44, 3.81, 3.57, 4.69, 3.76, 3.36, 2.85, 3.3]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.72, 2.62, 2.89, 2.86, 3.22, 2.62, 3.27, 2.75, 2.72, 3.48, 3.56, 4.72, 2.71, 2.71, 3.51]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 15 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `52%` wszystkich odpowiedzi.
* ABC vs ???:
`1:1, 2:1, 1:1, 1:1, 2:3, 1:3, 4:1, 2:2, 1:2, 1:1, 0:3, 2:0, 3:0, 3:0, 2:2`
* XYZ vs ???:
`3:3, 2:4, 3:3, 3:2, 4:4, 5:1, 6:2, 8:2, 3:3, 3:4, 2:6, 5:2, 3:2, 1:3, 2:3`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `52%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
1. Jaka jest hipoteza zerowa? * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `51` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `25` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `446` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `226` wyniki. Co mówi to o jego zdolnościach?
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
**Zadanie 5:** * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `15` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ. 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową. 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

144
433401.md
View File

@ -3,94 +3,96 @@ ID_testu: 433401
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[9, 4, 1, 4, 8, 5, 6, 6, 4, 6, 1, 4, 1, 5, 2, 5, 7, 5, 5, 6]` Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[4, 7, 4, 5, 9, 1, 6, 7, 2, 5, 1, 9, 4, 3, 8, 2, 6, 4]` * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
Student 02 : [0, 0, 0, 1, 1, 1, 0, 1, 1, 0]
Student 03 : [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]
Student 04 : [0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Student 05 : [1, 1, 0, 1, 1, 0, 1, 0, 0, 1]
Student 06 : [0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
Student 07 : [1, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Student 08 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
Student 09 : [1, 1, 0, 1, 1, 0, 0, 0, 0, 1]
Student 10 : [1, 0, 0, 1, 0, 1, 1, 0, 1, 1]
Student 11 : [1, 1, 0, 0, 0, 0, 0, 1, 1, 0]
Student 12 : [0, 1, 0, 1, 1, 0, 1, 0, 0, 0]
Student 13 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Student 14 : [1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
Student 15 : [0, 1, 1, 1, 0, 1, 1, 0, 0, 1]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. ```
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego? * Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 0, 0, 0, 1, 0, 0, 1]
Prowadzący 02 : [0, 0, 0, 1, 1, 1, 0, 1, 1, 0]
Prowadzący 03 : [1, 0, 1, 1, 0, 0, 0, 1, 1, 1]
Prowadzący 04 : [0, 1, 1, 0, 1, 0, 1, 0, 1, 1]
Prowadzący 05 : [1, 1, 0, 1, 1, 0, 1, 0, 0, 1]
Prowadzący 06 : [0, 0, 1, 1, 1, 1, 0, 0, 0, 0]
Prowadzący 07 : [1, 1, 1, 0, 0, 1, 1, 1, 1, 1]
Prowadzący 08 : [0, 0, 0, 0, 0, 0, 0, 1, 0, 1]
Prowadzący 09 : [1, 1, 0, 1, 1, 0, 0, 0, 0, 1]
Prowadzący 10 : [1, 0, 0, 1, 0, 1, 1, 0, 1, 1]
Prowadzący 11 : [1, 1, 0, 0, 0, 0, 0, 1, 1, 0]
Prowadzący 12 : [0, 1, 0, 1, 1, 0, 1, 0, 0, 0]
Prowadzący 13 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Prowadzący 14 : [1, 0, 1, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 15 : [0, 1, 1, 1, 0, 1, 1, 0, 0, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Z pól po lewej stronie drogi zebrano > `TAK` stanowi `57%` wszystkich odpowiedzi.
`[2.95, 3.31, 2.98, 3.09, 3.48, 2.4, 3.35, 2.91, 2.13, 2.97, 2.27, 3.51, 3.02, 2.86]` 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował > `TAK` stanowi nie więcej niż `57%` wszystkich odpowiedzi.
`[3.99, 2.36, 3.51, 3.86, 2.62, 3.93, 4.94, 3.66, 2.37, 3.08, 4.23, 4.37, 4.13]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.83, 2.77, 2.8, 3.15, 3.53, 2.58, 3.32, 2.92, 3.58, 3.72, 3.61, 3.54, 3.5]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[46.49, 47.07, 45.42, 50.09, 44.98, 41.83, 41.66, 37.42, 38.24, 41.42, 43.92, 47.77, 48.87, 44.55, 44.58, 48.56, 48.06, 48.6, 44.17, 47.33, 36.55, 48.36, 45.11, 45.51, 47.91, 48.92, 47.03, 42.55, 41.88, 46.1]` * `A = [56.7, 55.7, 48.4, 59.2, 49.4, 52.6, 64.3, 32.0, 60.4, 47.2, 23.8, 49.2, 28.0, 65.3]`
* `B = [60.4, 57.3, 65.6, 46.9, 60.1, 64.1, 49.9, 64.9, 76.5]`
Po podaniu leku XYZ wyniki były następujące: Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[48.47, 51.16, 47.22, 52.77, 36.71, 36.36, 34.83, 30.5, 33.61, 36.46, 38.26, 50.07, 48.66, 47.7, 49.06, 51.91, 53.17, 49.29, 39.21, 50.99, 32.04, 49.95, 47.77, 48.33, 47.77, 53.41, 52.11, 36.25, 32.71, 49.93]` * `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy? 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Po wykonaniu analizy okazało się, że grupa liczyła 11 kobiet i 19 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[41.66, 43.92, 41.88, 42.55, 44.98, 38.24, 44.17, 41.42, 36.55, 41.83, 37.42]`
- po: `[34.83, 38.26, 32.71, 36.25, 36.71, 33.61, 39.21, 36.46, 32.04, 36.36, 30.5]`
* Mężczyźni:
- przed: `[48.92, 47.07, 46.49, 48.06, 44.55, 47.03, 47.77, 45.11, 47.91, 50.09, 47.33, 44.58, 46.1, 48.56, 48.87, 48.36, 48.6, 45.42, 45.51]`
- po: `[53.41, 51.16, 48.47, 53.17, 47.7, 52.11, 50.07, 47.77, 47.77, 52.77, 50.99, 49.06, 49.93, 51.91, 48.66, 49.95, 49.29, 47.22, 48.33]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Zdefiniować czym jest cytat, parafraza, plagiat.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+9.1 %` wagi,
* `+11.9 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. 1. Czy i kiedy powinno się używać cytatu?
Dysponujesz już pomiarami wag grupy kontrolnej: 2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
wagi = `[278, 289, 327, 221, 314, 271, 195, 277, 208, 330, 282, 267, 308, 216, 281, 300, 231, 304]` 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `29` zawodowych sportowców;
* `24` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,76 +3,65 @@ ID_testu: 433402
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[80, 82, 73, 133, 145, 95, 104, 129, 65, 96, 174, 70, 43, 57, 98, 40, 113, 117, 48, 93, 67, 166, 109, 168, 90, 121, 83, 103]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [76.2, 84.5, 50.8, 56.9, 73.6, 31.2, 51.7, 100.0, 34.6, 16.0, 25.3, 52.8, 14.3, 62.7, 65.8, 19.8, 49.5, 32.4, 98.3, 60.3]`
`Prowadzący: [99.5, 47.9, 68.6, 42.6, 56.0, 45.0, 57.5, 48.4, 44.4, 62.6, 29.6, 54.1, 45.5, 63.2, 46.1, 50.0, 58.8, 47.0, 53.6, 75.7]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Z pól po lewej stronie drogi zebrano
`[2.82, 2.85, 2.73, 3.52, 3.69, 3.02, 3.14, 3.47, 2.62, 3.03, 4.07, 2.69, 2.32]` Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `18` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 4, 5, 4, 3, 3, 4, 5, 3, 6, 4, 7, 5, 3, 4, 5, 4]`
* dla `XYZ`: `[3, 4, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 3, 3, 3, 3, 3, 4]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.64, 3.6, 2.25, 3.94, 4.05, 2.44, 3.48, 2.88, 5.19, 3.86, 5.23, 3.43, 4.15, 3.24]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.45, 3.18, 3.49, 3.26, 3.16, 3.62, 2.79, 3.4, 3.19, 3.63, 3.2, 3.3, 3.52, 3.23]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 18 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `49%` wszystkich odpowiedzi.
* ABC vs ???:
`2:0, 2:1, 0:2, 1:0, 5:2, 3:1, 1:0, 3:1, 2:3, 1:2, 2:0, 1:1, 5:2, 3:1, 1:1, 0:2, 1:3, 1:0`
* XYZ vs ???:
`2:2, 2:1, 3:2, 6:3, 2:3, 3:3, 2:4, 4:5, 3:1, 2:3, 2:4, 2:2, 1:5, 7:2, 3:3, 3:1, 1:3, 1:3`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `49%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+7.8 %` wagi,
* `+15.0 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[258, 322, 335, 281, 291, 318, 250, 283, 365, 255, 226, 241, 284, 223, 300, 305, 232, 279, 252, 357, 296, 359, 277, 310]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `18` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

136
433404.md
View File

@ -3,90 +3,90 @@ ID_testu: 433404
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[133, 148, 100, 107, 110, 68, 112, 106, 63, 139, 114, 176, 107, 55, 105, 118, 148, 138, 103, 63, 87, 97, 108]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 0, 0, 0, 1, 0, 0, 1, 1, 0]
Student 02 : [1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
Student 03 : [1, 0, 0, 1, 0, 1, 0, 0, 1, 0]
Student 04 : [1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
Student 05 : [0, 1, 0, 0, 1, 1, 1, 1, 0, 0]
Student 06 : [1, 0, 1, 1, 1, 1, 0, 1, 1, 0]
Student 07 : [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
Student 08 : [0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Student 09 : [1, 1, 0, 0, 1, 0, 0, 1, 1, 0]
Student 10 : [1, 0, 1, 0, 1, 1, 1, 0, 1, 1]
Student 11 : [0, 1, 1, 1, 1, 0, 0, 1, 0, 0]
Student 12 : [0, 1, 1, 0, 1, 1, 0, 0, 1, 1]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 0, 0, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 02 : [1, 0, 1, 0, 0, 1, 1, 0, 1, 0]
Prowadzący 03 : [1, 0, 0, 1, 0, 1, 0, 0, 1, 0]
Prowadzący 04 : [1, 1, 1, 0, 0, 1, 1, 0, 0, 0]
Prowadzący 05 : [0, 1, 0, 0, 1, 1, 1, 1, 0, 0]
Prowadzący 06 : [1, 0, 1, 1, 1, 1, 0, 1, 1, 0]
Prowadzący 07 : [0, 1, 1, 1, 0, 0, 0, 0, 1, 1]
Prowadzący 08 : [0, 0, 1, 0, 1, 1, 0, 0, 0, 0]
Prowadzący 09 : [1, 1, 0, 0, 1, 0, 0, 1, 1, 0]
Prowadzący 10 : [1, 0, 1, 0, 1, 1, 1, 0, 1, 1]
Prowadzący 11 : [0, 1, 1, 1, 1, 0, 0, 1, 0, 0]
Prowadzący 12 : [0, 1, 1, 0, 1, 1, 0, 0, 1, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Z pól po lewej stronie drogi zebrano > `TAK` stanowi `36%` wszystkich odpowiedzi.
`[3.39, 3.58, 2.94, 3.04, 3.07, 2.51, 3.11, 3.03, 2.46, 3.47, 3.13]` 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował > `TAK` stanowi nie więcej niż `36%` wszystkich odpowiedzi.
`[5.17, 3.56, 2.35, 3.53, 3.82, 4.51, 4.29, 3.46, 2.53, 3.1, 3.32, 3.58, 3.46, 2.63, 3.74]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[2.73, 3.67, 3.33, 3.87, 2.89, 3.9, 3.73, 2.8, 3.18, 3.36, 3.01, 4.39, 3.42, 3.27, 3.15]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[47.17, 46.62, 48.75, 46.9, 45.61, 47.06, 44.96, 42.46, 44.54, 38.97, 47.47, 47.13, 42.67, 42.27, 42.17, 41.64, 50.57, 44.41, 48.7, 49.17, 44.93, 46.15, 47.68, 46.92]` * `A = [36.6, 48.5, 61.6, 67.3, 48.3, 51.3, 52.2, 35.4, 53.2, 50.8, 33.7, 64.0, 53.8, 78.6]`
* `B = [60.7, 46.9, 60.3, 63.6, 71.6, 69.0, 59.6, 48.9, 55.5]`
Po podaniu leku XYZ wyniki były następujące: Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[54.97, 48.03, 50.16, 47.04, 39.44, 50.85, 49.81, 36.22, 52.0, 35.41, 50.32, 49.28, 34.63, 37.43, 38.26, 33.1, 54.36, 35.25, 51.4, 52.03, 47.73, 48.92, 50.91, 51.89]` * `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy? 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Po wykonaniu analizy okazało się, że grupa liczyła 8 kobiet i 16 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[44.41, 45.61, 41.64, 42.27, 42.46, 38.97, 42.67, 42.17]`
- po: `[35.25, 39.44, 33.1, 37.43, 36.22, 35.41, 34.63, 38.26]`
* Mężczyźni:
- przed: `[44.96, 48.75, 47.47, 50.57, 47.13, 44.54, 47.06, 47.68, 49.17, 48.7, 46.92, 44.93, 46.15, 46.62, 47.17, 46.9]`
- po: `[49.81, 50.16, 50.32, 54.36, 49.28, 52.0, 50.85, 50.91, 52.03, 51.4, 51.89, 47.73, 48.92, 48.03, 54.97, 47.04]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Zdefiniować czym jest cytat, parafraza, plagiat.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+5.8 %` wagi,
* `+17.2 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. 1. Czy i kiedy powinno się używać cytatu?
Dysponujesz już pomiarami wag grupy kontrolnej: 2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
wagi = `[276, 283, 285, 247, 287, 282, 243, 312, 289, 344, 282, 236, 281, 292, 319, 311, 279, 243, 265, 273, 283, 278, 246, 289, 249]` 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `26` zawodowych sportowców;
* `21` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,77 +3,65 @@ ID_testu: 433468
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[82, 134, 132, 134, 143, 62, 105, 95, 64, 63, 140, 57, 143, 141, 62, 121, 193, 94, 82, 118]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [67.9, 73.8, 19.7, 48.7, 41.7, 21.5, 20.6, 72.0, 16.6, 74.1, 72.7, 20.2, 58.9, 100.0, 41.3, 33.5, 56.9, 53.4]`
`Prowadzący: [47.5, 47.4, 76.9, 82.6, 28.6, 34.4, 67.4, 31.4, 41.5, 50.5, 47.9, 35.0, 59.7, 47.8, 66.0, 61.7, 48.8, 25.5]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 5 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 5, 5, 4, 6, 4, 3, 4, 5, 5, 4, 4, 4, 8, 5, 4, 5, 4, 4, 4]`
* dla `XYZ`: `[3, 5, 5, 4, 5, 3, 3, 5, 6, 5, 6, 4, 4, 3, 3, 4, 5, 3, 3, 4]`
`[5.8, 14.5, 14.2, 14.5, 16.0, 2.4, 9.7, 7.9, 2.9, 2.6, 15.5, 2.0, 16.0, 15.7]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.5, 12.2, 24.4, 7.8, 5.9, 11.7, 10.9, 9.4, 9.3, 16.7, 18.1, 4.6, 6.1, 14.4]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[5.3, 7.9, 10.1, 9.5, 6.2, 12.4, 9.4, 14.0, 12.9, 9.7, 3.9, 6.8, 9.6, 16.8]`
`[10.5, 14.8, 5.1, 12.1, 19.6, 10.6, 11.8, 5.4, 5.6, 4.7, 2.4, 6.0, 2.7, 10.1]`
`[11.6, 16.9, 11.2, 10.6, 9.9, 13.5, 13.2, 2.0, 3.6, 12.8, 15.2, 13.4, 10.7, 15.1]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[17.5, 3.0, 14.5, 9.6, 13.6, 13.9, 7.5, 16.9, 14.3, 8.1, 13.2, 15.2, 10.7, 16.6]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 20 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `11%` wszystkich odpowiedzi.
* ABC vs ???:
`2:1, 1:0, 1:2, 1:0, 2:3, 3:3, 3:1, 0:2, 1:0, 3:0, 1:3, 1:2, 1:2, 0:3, 1:2, 1:0, 3:0, 2:0, 0:1, 1:2`
* XYZ vs ???:
`2:5, 2:3, 3:5, 4:4, 8:2, 2:2, 4:1, 2:7, 2:1, 3:2, 5:4, 5:2, 2:3, 1:4, 5:3, 1:3, 2:5, 4:2, 3:2, 0:4`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `11%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+1.7 %` wagi,
* `+15.1 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[303, 304, 312, 239, 278, 269, 241, 240, 310, 235, 312, 311, 240, 292, 358, 268, 258, 289, 285, 277, 276, 316]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `20` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

132
433469.md
View File

@ -3,78 +3,92 @@ ID_testu: 433469
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[67, 121, 101, 112, 85, 98, 144, 65, 137, 107, 83, 90, 111, 103, 128, 63, 81, 109, 111, 114]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
Student 02 : [1, 0, 0, 1, 0, 1, 0, 0, 0, 1]
Student 03 : [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
Student 04 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 0]
Student 05 : [1, 0, 1, 0, 0, 0, 1, 1, 0, 1]
Student 06 : [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]
Student 07 : [1, 0, 1, 0, 1, 1, 1, 1, 0, 1]
Student 08 : [0, 1, 1, 1, 1, 1, 0, 1, 0, 0]
Student 09 : [0, 0, 1, 1, 1, 1, 1, 0, 1, 1]
Student 10 : [1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Student 11 : [1, 0, 0, 1, 1, 0, 1, 1, 1, 1]
Student 12 : [0, 0, 1, 1, 1, 0, 0, 1, 1, 0]
Student 13 : [0, 0, 0, 0, 1, 1, 0, 1, 1, 1]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 0, 0, 0, 0, 1, 1, 1, 0, 0]
Prowadzący 02 : [1, 0, 0, 1, 0, 1, 0, 0, 0, 1]
Prowadzący 03 : [1, 1, 1, 1, 1, 1, 1, 1, 0, 0]
Prowadzący 04 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 0]
Prowadzący 05 : [1, 0, 1, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 06 : [1, 1, 1, 1, 1, 1, 0, 1, 0, 1]
Prowadzący 07 : [1, 0, 1, 0, 1, 1, 1, 1, 0, 1]
Prowadzący 08 : [0, 1, 1, 1, 1, 1, 0, 1, 0, 0]
Prowadzący 09 : [0, 0, 1, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 10 : [1, 0, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 11 : [1, 0, 0, 1, 1, 0, 1, 1, 1, 1]
Prowadzący 12 : [0, 0, 1, 1, 1, 0, 0, 1, 1, 0]
Prowadzący 13 : [0, 0, 0, 0, 1, 1, 0, 1, 1, 1]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Z pól po lewej stronie drogi zebrano > `TAK` stanowi `41%` wszystkich odpowiedzi.
`[2.53, 3.25, 2.99, 3.13, 2.77, 2.94, 3.56, 2.51, 3.46, 3.07, 2.75, 2.84, 3.11, 3.01, 3.35]` 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował > `TAK` stanowi nie więcej niż `41%` wszystkich odpowiedzi.
`[2.59, 3.01, 3.66, 3.71, 3.77, 3.26, 5.1, 3.19, 4.36, 4.69, 4.34, 3.2, 4.85, 3.54, 2.91]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.98, 2.94, 2.66, 3.48, 3.72, 3.86, 3.27, 3.33, 2.85, 3.99, 2.69, 3.21, 2.96, 3.28, 3.47]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 20 meczy każdej z drużn skończyły się następującymi wynikami: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* ABC vs ???:
`0:2, 2:2, 1:2, 2:0, 1:2, 2:0, 2:1, 2:1, 3:3, 3:2, 0:1, 2:2, 2:1, 1:3, 1:2, 2:2, 3:3, 2:1, 0:0, 0:2`
* XYZ vs ???:
`4:2, 4:4, 3:2, 1:3, 2:4, 4:4, 3:1, 3:5, 3:4, 2:2, 6:3, 5:3, 1:6, 2:4, 3:3, 3:4, 3:2, 1:3, 1:2, 8:1`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? * `A = [41.3, 43.6, 36.0, 57.4, 49.6, 54.0, 43.2, 48.3, 66.8, 35.2, 63.8, 52.0, 42.4, 45.1]`
* `B = [62.3, 60.2, 67.0, 49.6, 54.4, 61.8, 62.4, 63.1, 57.3]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Zdefiniować czym jest cytat, parafraza, plagiat.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+6.5 %` wagi,
* `+17.4 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. 1. Czy i kiedy powinno się używać cytatu?
Dysponujesz już pomiarami wag grupy kontrolnej: 2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
wagi = `[279, 293, 258, 274, 335, 232, 325, 286, 255, 264, 291, 281, 314, 229, 253, 289, 292, 295, 267, 369, 263, 328, 346, 327, 263]` 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

139
433472.md
View File

@ -3,89 +3,96 @@ ID_testu: 433472
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[4, 6, 2, 8, 4, 7, 6, 8, 6, 4, 1, 6, 7, 6, 4, 3, 3, 6]` Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[4, 9, 0, 2, 6, 1, 2, 4, 3, 4, 4, 3, 6, 4, 3, 5, 0, 4, 7]` * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [1, 1, 1, 0, 1, 1, 0, 1, 0, 0]
Student 02 : [1, 1, 0, 1, 1, 1, 1, 1, 0, 0]
Student 03 : [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]
Student 04 : [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
Student 05 : [1, 1, 1, 0, 1, 0, 1, 1, 1, 0]
Student 06 : [0, 1, 1, 0, 0, 0, 0, 1, 0, 1]
Student 07 : [1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Student 08 : [0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
Student 09 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Student 10 : [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]
Student 11 : [1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
Student 12 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Student 13 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Student 14 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Student 15 : [1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. ```
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego? * Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [1, 1, 1, 0, 1, 1, 0, 1, 0, 0]
Prowadzący 02 : [1, 1, 0, 1, 1, 1, 1, 1, 0, 0]
Prowadzący 03 : [0, 1, 1, 1, 0, 1, 0, 1, 0, 0]
Prowadzący 04 : [0, 0, 0, 0, 0, 1, 1, 0, 0, 0]
Prowadzący 05 : [1, 1, 1, 0, 1, 0, 1, 1, 1, 0]
Prowadzący 06 : [0, 1, 1, 0, 0, 0, 0, 1, 0, 1]
Prowadzący 07 : [1, 0, 1, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 08 : [0, 0, 0, 0, 0, 1, 1, 0, 1, 0]
Prowadzący 09 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 10 : [0, 0, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 11 : [1, 0, 0, 1, 0, 0, 1, 1, 1, 1]
Prowadzący 12 : [0, 0, 0, 0, 0, 1, 0, 0, 0, 1]
Prowadzący 13 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 14 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Prowadzący 15 : [1, 1, 1, 1, 0, 1, 0, 0, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Na pola wyszło 4 grup studentów. > `TAK` stanowi `51%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[11.0, 20.3, 2.0, 3.0, 11.9, 2.0, 2.1, 6.8, 3.5, 10.1, 11.9, 4.5, 14.5]` > `TAK` stanowi nie więcej niż `51%` wszystkich odpowiedzi.
`[8.4, 5.8, 13.0, 2.0, 7.0, 17.5, 12.5, 9.2, 9.7, 13.7, 5.5, 19.5, 11.1]`
`[13.0, 11.2, 21.2, 13.1, 4.8, 10.1, 12.2, 14.9, 11.4, 7.2, 5.6, 10.2, 10.8]`
`[10.0, 15.9, 5.9, 5.5, 11.7, 17.7, 19.4, 7.9, 9.2, 9.4, 4.4, 6.9, 8.7]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[15.3, 10.4, 15.0, 6.5, 16.6, 13.8, 14.6, 17.9, 11.7, 12.1, 12.7, 15.3, 12.8]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[43.53, 48.12, 45.45, 37.1, 42.5, 46.52, 38.49, 42.93, 46.75, 38.77, 45.65, 42.03, 47.89, 47.9, 46.92, 46.09, 42.97, 47.37, 47.17, 40.42, 50.36, 37.65, 49.86, 48.34, 49.26, 47.34, 38.04, 45.75, 47.76, 45.36, 47.92]` * `A = [50.7, 46.8, 52.4, 74.8, 29.1, 33.1, 54.5, 26.5, 31.0, 42.4, 34.5, 50.1, 54.7, 36.9]`
* `B = [67.1, 57.5, 53.3, 64.8, 41.5, 55.1, 72.1, 64.0, 58.7]`
Po podaniu leku XYZ wyniki były następujące: Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[46.27, 52.91, 48.24, 29.76, 36.15, 52.85, 33.27, 35.36, 49.5, 32.97, 47.81, 38.1, 53.27, 50.42, 48.93, 49.06, 34.9, 51.34, 40.98, 34.68, 54.96, 33.96, 54.59, 52.41, 50.46, 47.65, 32.43, 52.72, 49.86, 46.72, 53.98]` * `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy? 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Po wykonaniu analizy okazało się, że grupa liczyła 11 kobiet i 20 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[42.5, 47.17, 37.65, 38.49, 42.93, 37.1, 38.04, 40.42, 38.77, 42.03, 42.97]`
- po: `[36.15, 40.98, 33.96, 33.27, 35.36, 29.76, 32.43, 34.68, 32.97, 38.1, 34.9]`
* Mężczyźni:
- przed: `[45.36, 48.34, 46.52, 45.75, 47.9, 43.53, 46.09, 49.26, 47.76, 46.75, 46.92, 48.12, 45.65, 49.86, 47.34, 47.89, 47.37, 50.36, 47.92, 45.45]`
- po: `[46.72, 52.41, 52.85, 52.72, 50.42, 46.27, 49.06, 50.46, 49.86, 49.5, 48.93, 52.91, 47.81, 54.59, 47.65, 53.27, 51.34, 54.96, 53.98, 48.24]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Zdefiniować czym jest cytat, parafraza, plagiat.
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+8.1 %` wagi,
* `+11.5 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. 1. Czy i kiedy powinno się używać cytatu?
Dysponujesz już pomiarami wag grupy kontrolnej: 2. Kiedy parafraza jest dopuszczalną formą pracy?
3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
wagi = `[233, 242, 290, 227, 237, 263, 245, 280, 290, 250, 304, 271, 257, 296, 218, 264, 321, 294, 276]` 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane)
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `19` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

101
433474.md
View File

@ -3,86 +3,65 @@ ID_testu: 433474
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[4, 3, 4, 6, 1, 5, 7, 3, 2, 2, 6, 5, 2, 10, 3, 4, 3, 9, 3, 4, 7, 3]` Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Grupa testowa: `[8, 5, 5, 8, 3, 3, 5, 6, 7, 2, 7, 1, 6, 6, 5, 3]` Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. `Studenci: [88.8, 35.4, 43.4, 59.4, 56.8, 63.2, 34.8, 62.4, 33.8, 65.7, 45.5, 45.4, 39.5, 9.7, 77.4, 38.7, 25.8, 53.5, 60.4]`
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku? `Prowadzący: [14.7, 48.5, 59.4, 15.4, 29.9, 32.3, 57.5, 48.3, 34.3, 76.8, 35.9, 55.6, 25.7, 64.5, 48.6, 17.8, 72.7, 43.3, 64.8]`
Dlaczego?
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 3 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 3, 3, 6, 5, 3, 4, 4, 4, 5, 5, 4, 4, 4, 3]`
* dla `XYZ`: `[4, 3, 6, 4, 3, 6, 4, 3, 5, 4, 5, 5, 4, 5, 4]`
`[16.9, 10.4, 12.9, 19.7, 6.3, 8.4, 12.3, 11.7, 13.3, 6.2]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `4` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[13.1, 6.0, 13.9, 8.9, 8.8, 7.4, 2.0, 16.9, 7.2, 4.0]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[10.9, 12.6, 2.0, 9.6, 12.3, 2.0, 5.0, 5.6, 11.9, 9.6]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[17.9, 9.7, 13.6, 7.6, 15.4, 12.2, 6.1, 17.0, 11.2, 15.5]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `54%` wszystkich odpowiedzi.
`[45.79, 46.89, 47.93, 48.17, 47.26, 43.17, 45.45, 47.78, 43.98, 45.86, 45.19, 44.35, 43.44, 46.21, 49.06, 46.66, 41.18, 46.84, 47.51, 47.99, 40.17, 42.18, 46.65, 46.16]` 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
Po podaniu leku XYZ wyniki były następujące: > `TAK` stanowi nie więcej niż `54%` wszystkich odpowiedzi.
`[50.45, 50.52, 48.85, 51.4, 51.39, 35.12, 39.57, 52.99, 48.54, 49.63, 46.78, 48.09, 34.92, 48.78, 51.57, 46.71, 34.83, 38.05, 53.51, 49.94, 34.9, 32.39, 52.19, 46.94]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 7 kobiet i 17 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[45.45, 42.18, 43.44, 46.84, 40.17, 41.18, 43.17]`
- po: `[39.57, 32.39, 34.92, 38.05, 34.9, 34.83, 35.12]`
* Mężczyźni:
- przed: `[47.51, 47.99, 45.86, 47.93, 45.79, 48.17, 46.66, 46.65, 46.21, 43.98, 49.06, 46.16, 45.19, 47.26, 47.78, 44.35, 46.89]`
- po: `[53.51, 49.94, 49.63, 48.85, 50.45, 51.4, 46.71, 52.19, 48.78, 48.54, 51.57, 46.94, 46.78, 51.39, 52.99, 48.09, 50.52]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
1. Jaka jest hipoteza zerowa? * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `57` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `21` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `429` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `236` wyniki. Co mówi to o jego zdolnościach?
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
**Zadanie 5:** * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `25` zawodowych sportowców;
* `22` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.) 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową. 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

116
433476.md
View File

@ -3,70 +3,84 @@ ID_testu: 433476
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[83, 96, 57, 120, 63, 119, 36, 121, 92, 94, 83, 76, 76, 109, 105, 90, 96, 73, 136, 134, 106, 106, 115, 129, 71, 125, 90, 90, 46]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
Student 02 : [0, 1, 0, 0, 0, 0, 1, 1, 1, 0]
Student 03 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Student 04 : [0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
Student 05 : [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
Student 06 : [0, 1, 1, 0, 1, 0, 0, 1, 0, 0]
Student 07 : [0, 0, 0, 0, 1, 1, 0, 1, 0, 1]
Student 08 : [1, 0, 1, 0, 1, 1, 0, 1, 0, 0]
Student 09 : [0, 1, 1, 0, 0, 1, 0, 1, 1, 0]
```
* Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 0, 0, 0, 1, 0, 0, 0, 0]
Prowadzący 02 : [0, 1, 0, 0, 0, 0, 1, 1, 1, 0]
Prowadzący 03 : [0, 0, 0, 1, 0, 0, 0, 1, 1, 0]
Prowadzący 04 : [0, 0, 0, 0, 1, 1, 1, 1, 1, 0]
Prowadzący 05 : [0, 0, 0, 0, 0, 0, 1, 1, 1, 1]
Prowadzący 06 : [0, 1, 1, 0, 1, 0, 0, 1, 0, 0]
Prowadzący 07 : [0, 0, 0, 0, 1, 1, 0, 1, 0, 1]
Prowadzący 08 : [1, 0, 1, 0, 1, 1, 0, 1, 0, 0]
Prowadzący 09 : [0, 1, 1, 0, 0, 1, 0, 1, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Na pola wyszło 4 grup studentów. > `TAK` stanowi `21%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[5.9, 8.1, 2.0, 12.2, 2.7, 12.0, 2.0, 12.4, 7.6, 7.9, 6.1, 4.8]` > `TAK` stanowi nie więcej niż `21%` wszystkich odpowiedzi.
`[4.8, 10.4, 9.6, 7.1, 8.2, 4.4, 14.9, 14.4, 9.8, 9.9, 11.4, 13.7]`
`[4.0, 12.9, 7.2, 7.3, 2.0, 16.8, 7.3, 8.2, 11.8, 10.6, 12.6, 18.2]`
`[2.0, 4.7, 19.6, 13.1, 12.0, 5.9, 8.1, 11.2, 13.0, 7.9, 17.1, 15.4]`
1. Czy pojedynczy student który zebrał `10.9` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[11.0, 9.7, 16.6, 8.6, 15.9, 11.8, 8.6, 10.5, 8.6, 9.8, 10.4, 10.8]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 16 meczy każdej z drużn skończyły się następującymi wynikami: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
* ABC vs ???:
`2:1, 0:3, 2:2, 4:2, 1:2, 1:4, 0:3, 1:1, 1:2, 1:0, 1:1, 1:1, 1:1, 4:1, 2:1, 1:0`
* XYZ vs ???:
`1:4, 0:6, 4:4, 4:5, 4:1, 3:3, 0:5, 5:2, 4:1, 4:4, 4:4, 2:3, 3:4, 1:4, 0:4, 4:4`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? * `A = [21.7, 31.1, 40.2, 45.5, 30.2, 55.4, 32.5, 54.8, 21.5, 55.7, 44.2, 45.0, 40.6, 37.6]`
* `B = [51.7, 60.6, 59.4, 55.4, 57.1, 51.1, 67.9, 67.1, 59.7]`
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
* `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Zdefiniować czym jest cytat, parafraza, plagiat.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) 1. Czy i kiedy powinno się używać cytatu?
1. Jaka jest hipoteza zerowa? 2. Kiedy parafraza jest dopuszczalną formą pracy?
2. Czy należy użyć testu jedno-, czy dwu-stronnego? 3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)? 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `44` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `28` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `494` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `259` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `16` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,77 +3,65 @@ ID_testu: 433478
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[31, 104, 96, 99, 92, 124, 93, 78, 82, 111, 112, 87, 107, 99, 84, 101, 82, 71, 77, 141, 85, 163, 125, 151, 123, 101]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [50.8, 46.1, 67.4, 46.7, 36.5, 39.8, 58.8, 59.7, 43.1, 56.2, 50.8, 41.2, 52.5, 39.3, 32.0, 36.0, 78.6, 41.8, 93.6, 68.4]`
`Prowadzący: [85.7, 66.9, 52.5, 50.8, 46.4, 100.0, 70.6, 30.7, 52.4, 91.1, 35.6, 80.8, 33.7, 37.7, 30.4, 67.8, 61.4, 100.0, 76.3, 42.8]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 5 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `20` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[7, 3, 3, 3, 3, 5, 6, 6, 3, 3, 5, 7, 3, 4, 4, 4, 3, 5, 3, 4]`
* dla `XYZ`: `[4, 4, 4, 5, 4, 3, 4, 3, 4, 3, 5, 4, 3, 3, 5, 3, 4, 3, 4, 4]`
`[2.0, 11.1, 9.8, 10.2, 9.0, 14.3, 9.2, 6.6, 7.5, 12.2, 12.4, 8.3, 11.6]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[10.2, 7.8, 10.6, 7.3, 5.5, 6.5, 17.2, 8.0, 20.9, 14.6, 18.9, 14.2, 10.6]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[10.2, 9.1, 32.2, 15.2, 5.2, 10.6, 20.3, 6.4, 17.7, 5.9, 6.9, 5.1, 14.4]`
`[12.9, 22.7, 16.6, 8.2, 20.1, 9.1, 11.5, 7.7, 2.0, 6.7, 4.0, 7.4, 6.2]`
`[10.1, 4.2, 11.2, 3.4, 4.9, 10.8, 15.8, 2.0, 19.2, 11.8, 10.8, 6.4, 11.3]`
1. Czy pojedynczy student który zebrał `2.0` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[12.3, 15.1, 13.9, 11.2, 7.6, 9.8, 8.6, 22.2, 16.4, 13.4, 17.8, 9.9, 8.0]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 20 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `40%` wszystkich odpowiedzi.
* ABC vs ???:
`2:1, 3:2, 0:1, 4:1, 0:2, 2:2, 2:2, 3:1, 2:0, 0:2, 0:2, 1:2, 4:0, 0:1, 0:0, 1:2, 3:1, 0:3, 4:1, 1:4`
* XYZ vs ???:
`3:4, 4:2, 3:1, 3:0, 2:4, 3:0, 4:3, 4:4, 3:2, 4:3, 2:5, 4:2, 3:3, 3:3, 2:4, 3:0, 1:5, 4:2, 1:2, 4:2`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `40%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+6.3 %` wagi,
* `+19.5 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[279, 281, 274, 307, 275, 259, 264, 294, 295, 269, 290, 281, 266, 284, 263, 252, 258, 324, 267, 348, 308, 335, 306, 284]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `30` zawodowych sportowców;
* `22` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

135
433479.md
View File

@ -3,89 +3,92 @@ ID_testu: 433479
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[6, 6, 4, 8, 5, 7, 7, 6, 1, 3, 3, 2, 6, 6, 6, 3, 7, 8, 7]` Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[2, 3, 1, 4, 6, 3, 5, 8, 3, 3, 6, 6, 8, 5, 7, 7, 2, 3, 7, 1]` * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 0, 0, 1, 0, 1, 1, 0, 1]
Student 02 : [0, 1, 0, 1, 1, 1, 1, 0, 1, 1]
Student 03 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 1]
Student 04 : [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
Student 05 : [0, 0, 0, 0, 0, 1, 0, 1, 1, 0]
Student 06 : [1, 0, 0, 0, 0, 1, 0, 1, 1, 1]
Student 07 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Student 08 : [1, 0, 1, 0, 1, 1, 0, 0, 0, 1]
Student 09 : [0, 1, 1, 0, 0, 0, 1, 0, 1, 0]
Student 10 : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Student 11 : [1, 1, 0, 1, 1, 1, 1, 0, 0, 0]
Student 12 : [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
Student 13 : [1, 0, 1, 0, 0, 1, 1, 1, 0, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. ```
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego? * Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 0, 0, 1, 0, 1, 1, 0, 1]
Prowadzący 02 : [0, 1, 0, 1, 1, 1, 1, 0, 1, 1]
Prowadzący 03 : [1, 1, 0, 0, 0, 0, 0, 0, 1, 1]
Prowadzący 04 : [0, 1, 0, 1, 0, 0, 0, 1, 0, 1]
Prowadzący 05 : [0, 0, 0, 0, 0, 1, 0, 1, 1, 0]
Prowadzący 06 : [1, 0, 0, 0, 0, 1, 0, 1, 1, 1]
Prowadzący 07 : [0, 1, 0, 0, 0, 0, 0, 1, 1, 1]
Prowadzący 08 : [1, 0, 1, 0, 1, 1, 0, 0, 0, 1]
Prowadzący 09 : [0, 1, 1, 0, 0, 0, 1, 0, 1, 0]
Prowadzący 10 : [0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Prowadzący 11 : [1, 1, 0, 1, 1, 1, 1, 0, 0, 0]
Prowadzący 12 : [0, 0, 1, 0, 0, 1, 1, 0, 1, 1]
Prowadzący 13 : [1, 0, 1, 0, 0, 1, 1, 1, 0, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Z pól po lewej stronie drogi zebrano > `TAK` stanowi `70%` wszystkich odpowiedzi.
`[2.42, 2.83, 2.38, 2.7, 3.38, 2.8, 3.2, 3.71, 2.84, 2.82, 3.37, 3.2]` 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
[kg groszku]. Zbiór z pól po prawej stronie zaowocował > `TAK` stanowi nie więcej niż `70%` wszystkich odpowiedzi.
`[4.03, 3.6, 4.76, 3.84, 2.83, 3.32, 4.07, 2.32, 4.13, 2.79, 3.3, 3.55, 2.74, 3.95, 3.46]`
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.46, 3.9, 2.71, 2.35, 2.71, 2.97, 2.62, 3.35, 3.47, 3.56, 2.8, 3.55, 4.05, 3.78, 3.81]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[48.36, 46.43, 45.38, 38.14, 46.31, 40.93, 44.47, 47.74, 45.57, 40.15, 49.69, 46.57, 48.38, 46.62, 47.12, 47.2, 38.36, 41.0, 45.47, 40.76, 43.25, 47.73, 48.22, 44.38, 48.13]` * `A = [69.6, 45.1, 32.5, 44.8, 31.5, 41.1, 61.4, 44.1, 56.0, 71.3, 45.2, 44.5, 61.0, 55.9]`
* `B = [66.0, 61.1, 74.4, 63.9, 52.4, 58.0, 66.5, 46.5, 67.3]`
Po podaniu leku XYZ wyniki były następujące: Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[49.27, 38.14, 48.51, 33.06, 49.73, 34.68, 49.0, 52.1, 50.79, 36.54, 56.16, 48.43, 52.43, 49.1, 48.22, 51.51, 33.89, 32.15, 49.29, 30.84, 34.41, 52.98, 49.31, 35.37, 49.48]` * `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy? 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Po wykonaniu analizy okazało się, że grupa liczyła 9 kobiet i 16 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[38.36, 40.93, 38.14, 40.15, 44.38, 40.76, 43.25, 46.43, 41.0]`
- po: `[33.89, 34.68, 33.06, 36.54, 35.37, 30.84, 34.41, 38.14, 32.15]`
* Mężczyźni:
- przed: `[46.31, 48.38, 47.74, 48.13, 47.2, 49.69, 47.73, 45.57, 46.62, 48.22, 44.47, 48.36, 45.47, 46.57, 47.12, 45.38]`
- po: `[49.73, 52.43, 52.1, 49.48, 51.51, 56.16, 52.98, 50.79, 49.1, 49.31, 49.0, 49.27, 49.29, 48.43, 48.22, 48.51]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Zdefiniować czym jest cytat, parafraza, plagiat.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) 1. Czy i kiedy powinno się używać cytatu?
1. Jaka jest hipoteza zerowa? 2. Kiedy parafraza jest dopuszczalną formą pracy?
2. Czy należy użyć testu jedno-, czy dwu-stronnego? 3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)? 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `53` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `30` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `548` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `277` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

140
433480.md
View File

@ -3,88 +3,98 @@ ID_testu: 433480
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[2, 4, 3, 4, 4, 7, 8, 3, 10, 4, 4, 5, 4, 4, 6, 7, 3, 4, 5, 8, 6, 0]` Każdej osobie z grup składających się ze studentów i prowadzących pokazano `10` komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
(`1` oznacza "zabawny", `0` oznacza "niezbyt zabawny")
Grupa testowa: `[7, 4, 4, 7, 4, 7, 4, 7, 2, 0, 5, 3, 8, 6, 7, 3, 4, 6, 9]` * Studenci
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Student 01 : [0, 1, 1, 0, 0, 1, 1, 0, 1, 1]
Student 02 : [0, 1, 0, 1, 0, 0, 0, 1, 1, 1]
Student 03 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 1]
Student 04 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 1]
Student 05 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
Student 06 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 1]
Student 07 : [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]
Student 08 : [1, 0, 0, 0, 0, 0, 1, 1, 0, 1]
Student 09 : [0, 1, 1, 0, 1, 0, 0, 0, 1, 0]
Student 10 : [1, 0, 1, 0, 1, 0, 0, 0, 1, 0]
Student 11 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Student 12 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Student 13 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
Student 14 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 0]
Student 15 : [1, 0, 0, 0, 0, 1, 1, 0, 0, 1]
Student 16 : [0, 1, 0, 1, 0, 1, 0, 0, 1, 0]
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. ```
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku?
Dlaczego? * Prowadzący:
```
Komiks : K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
Prowadzący 01 : [0, 1, 1, 0, 0, 1, 1, 0, 1, 1]
Prowadzący 02 : [0, 1, 0, 1, 0, 0, 0, 1, 1, 1]
Prowadzący 03 : [0, 1, 0, 0, 0, 1, 0, 1, 1, 1]
Prowadzący 04 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 05 : [0, 1, 1, 1, 1, 1, 1, 0, 1, 0]
Prowadzący 06 : [0, 1, 1, 1, 1, 1, 0, 0, 1, 1]
Prowadzący 07 : [1, 1, 0, 1, 1, 1, 1, 1, 1, 0]
Prowadzący 08 : [1, 0, 0, 0, 0, 0, 1, 1, 0, 1]
Prowadzący 09 : [0, 1, 1, 0, 1, 0, 0, 0, 1, 0]
Prowadzący 10 : [1, 0, 1, 0, 1, 0, 0, 0, 1, 0]
Prowadzący 11 : [0, 0, 1, 1, 0, 0, 1, 0, 0, 1]
Prowadzący 12 : [1, 0, 0, 1, 0, 0, 0, 0, 1, 0]
Prowadzący 13 : [0, 0, 0, 1, 0, 0, 1, 0, 0, 0]
Prowadzący 14 : [1, 0, 1, 1, 0, 1, 1, 1, 1, 0]
Prowadzący 15 : [1, 0, 0, 0, 0, 1, 1, 0, 0, 1]
Prowadzący 16 : [0, 1, 0, 1, 0, 1, 0, 0, 1, 0]
```
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy można użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadź test statystyczny który pozwoli potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. Masz wykonać eksperyment, w którym możliwymi wynikami są `TAK` lub `NIE`. Hipoteza zerowa brzmi
Na pola wyszło 5 grup studentów. > `TAK` stanowi `66%` wszystkich odpowiedzi.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: 1. Jak będzie wyglądało badanie pozwalające potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
`[12.6, 12.2, 6.8, 16.4, 9.5, 14.8, 13.6, 17.8]` > `TAK` stanowi nie więcej niż `66%` wszystkich odpowiedzi.
`[7.3, 2.0, 7.5, 11.6, 20.2, 11.7, 15.1, 8.5]`
`[9.6, 9.8, 17.1, 17.2, 3.2, 5.8, 7.0, 7.7]`
`[9.0, 4.3, 18.0, 14.9, 3.3, 18.9, 4.1, 11.1]`
`[12.5, 13.9, 6.5, 13.3, 10.6, 3.2, 9.0, 13.4]`
1. Czy pojedynczy student który zebrał `12.4` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[10.4, 5.2, 8.8, 6.4, 5.5, 18.6, 19.2, 10.7]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Studenci pisali egzamin w dwóch grupach (`A` i `B`). Punktacja którą otrzymali to:
`[46.7, 46.11, 49.15, 45.3, 41.74, 49.4, 47.49, 44.36, 44.95, 46.26, 43.28, 40.42, 46.89, 46.54, 40.64, 47.51, 48.54, 45.19, 46.93, 43.78, 44.4, 45.75, 45.9, 43.11, 50.07, 46.32, 49.12]` * `A = [65.1, 38.7, 56.1, 55.3, 42.4, 65.3, 48.7, 61.5, 58.5, 68.7, 43.5, 28.8, 44.1, 53.9]`
* `B = [76.4, 62.7, 68.2, 57.6, 59.4, 59.6, 71.3, 71.4, 49.1]`
Po podaniu leku XYZ wyniki były następujące: Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
`[49.88, 44.73, 55.66, 50.03, 35.92, 51.12, 50.43, 47.72, 51.46, 46.77, 38.74, 37.92, 48.3, 46.13, 35.87, 54.59, 50.91, 36.05, 47.15, 38.76, 38.74, 48.07, 37.63, 33.95, 54.94, 50.05, 49.07]` * `C = [46.2, 32.5, 52.5, 43.8, 28.7, 51.2, 36.2, 40.0, 52.5]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy? 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi `A` i `B`, czy może zostały wzięte z tej samej populacji?
2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Po wykonaniu analizy okazało się, że grupa liczyła 9 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[43.28, 43.11, 40.42, 45.19, 41.74, 44.4, 43.78, 45.9, 40.64]`
- po: `[38.74, 33.95, 37.92, 36.05, 35.92, 38.74, 38.76, 37.63, 35.87]`
* Mężczyźni:
- przed: `[44.36, 46.26, 47.49, 50.07, 47.51, 48.54, 46.54, 46.89, 46.93, 49.12, 49.15, 44.95, 45.75, 46.11, 46.32, 46.7, 45.3, 49.4]`
- po: `[47.72, 46.77, 50.43, 54.94, 54.59, 50.91, 46.13, 48.3, 47.15, 49.07, 55.66, 51.46, 48.07, 44.73, 50.05, 49.88, 50.03, 51.12]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Zdefiniować czym jest cytat, parafraza, plagiat.
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) 1. Czy i kiedy powinno się używać cytatu?
1. Jaka jest hipoteza zerowa? 2. Kiedy parafraza jest dopuszczalną formą pracy?
2. Czy należy użyć testu jedno-, czy dwu-stronnego? 3. W jaki sposób używać cytatu i/lub parafrazy tak aby nie zostać posądzonym o plagiat?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)? 4. Kiedy przypisanie sobie autorstwa wypowiedzi (słownej lub pisemnej) przygotowanej w oparciu o inne źródła nie jest plagiatem?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `55` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `24` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `595` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `310` wyniki. Co mówi to o jego zdolnościach?
**Zadanie 5:**
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

106
433485.md
View File

@ -3,91 +3,65 @@ ID_testu: 433485
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[6, 5, 4, 7, 5, 1, 5, 4, 8, 9, 10, 8, 5, 3, 9, 5, 1, 7, 7, 4]` Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Grupa testowa: `[0, 3, 11, 8, 6, 5, 6, 2, 7, 1, 7, 4, 2, 5, 3, 2]` Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. `Studenci: [75.1, 61.9, 51.5, 64.8, 38.6, 58.3, 20.7, 66.3, 54.2, 34.8, 49.2]`
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku? `Prowadzący: [39.5, 18.1, 59.0, 74.7, 73.0, 60.0, 27.7, 53.2, 43.5, 17.4, 46.8]`
Dlaczego?
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Z pól po lewej stronie drogi zebrano
`[2.69, 2.89, 3.37, 3.5, 3.24, 3.03, 3.3, 2.77, 3.17, 2.41, 3.33, 3.08]` Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `17` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 3, 4, 5, 4, 3, 3, 5, 4, 4, 4, 3, 4, 3, 4, 6, 4]`
* dla `XYZ`: `[5, 3, 3, 6, 5, 3, 3, 6, 5, 4, 4, 3, 4, 5, 4, 3, 3]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `4` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.97, 3.47, 3.13, 2.38, 3.82, 4.37, 4.3, 3.85, 2.72, 3.61, 3.27]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[2.48, 3.22, 3.33, 4.18, 4.11, 4.35, 4.04, 3.22, 2.71, 4.52, 3.41]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `66%` wszystkich odpowiedzi.
`[44.55, 49.64, 42.18, 45.33, 41.29, 44.61, 40.58, 47.09, 48.86, 45.14, 46.76, 43.04, 46.94, 47.24, 47.32, 43.84, 47.75, 48.22, 40.07, 44.81, 46.21, 43.49, 47.68, 46.51, 45.86, 48.72, 44.32]` 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
Po podaniu leku XYZ wyniki były następujące: > `TAK` stanowi nie więcej niż `66%` wszystkich odpowiedzi.
`[47.97, 56.17, 40.72, 47.38, 39.31, 47.95, 31.41, 54.42, 53.89, 38.06, 49.97, 37.1, 53.03, 52.54, 51.67, 37.7, 52.26, 51.3, 37.29, 50.23, 49.06, 34.62, 43.57, 49.35, 53.47, 51.87, 40.61]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 9 kobiet i 18 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[40.07, 41.29, 44.32, 45.14, 43.49, 42.18, 43.84, 40.58, 43.04]`
- po: `[37.29, 39.31, 40.61, 38.06, 34.62, 40.72, 37.7, 31.41, 37.1]`
* Mężczyźni:
- przed: `[44.81, 48.22, 47.32, 45.86, 46.94, 46.21, 44.61, 47.68, 48.86, 48.72, 47.75, 45.33, 47.24, 46.51, 44.55, 46.76, 47.09, 49.64]`
- po: `[50.23, 51.3, 51.67, 53.47, 53.03, 49.06, 47.95, 43.57, 53.89, 51.87, 52.26, 47.38, 52.54, 49.35, 47.97, 49.97, 54.42, 56.17]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
1. Jaka jest hipoteza zerowa? * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `57` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `26` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `520` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `301` wyniki. Co mówi to o jego zdolnościach?
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
**Zadanie 5:** * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `27` zawodowych sportowców;
* `23` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.) 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową. 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,73 +3,65 @@ ID_testu: 440469
**Zadanie 1:** **Zadanie 1:**
Hodowla lam peruwiańskich z powodu braku popytu postanowiła zmienić branżę na gospodarstwo agroturystyczne z alpako-terapią. Naukowcy postanowili odpowiedzieć na pytanie:
Hodowla dysponuje populacją lam o wysokości w kłębie (w cm):
`[116, 86, 122, 118, 97, 123, 112, 98, 142, 144, 124, 99, 161, 67, 48, 133, 111, 115, 104, 84, 57, 80, 72, 116, 81, 122, 120]` > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
podczas gdy średnia wysokość alpaki w kłębie nie przekracza 100 cm. Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Czy patrząc tylko na wysokość w kłębie niczego niespodziewający się klienci alpako-terapii mogą wykryć oszustwo? Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
`Studenci: [63.0, 48.6, 66.5, 58.7, 49.5, 78.5, 79.9, 67.1, 50.1, 91.7, 29.2]`
`Prowadzący: [15.9, 72.7, 58.1, 61.0, 53.2, 39.9, 22.0, 37.4, 31.9, 61.2, 38.3]`
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 4 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `16` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[4, 3, 4, 4, 3, 5, 4, 3, 4, 4, 5, 3, 6, 4, 4, 4]`
* dla `XYZ`: `[4, 3, 3, 3, 4, 3, 4, 5, 3, 3, 4, 4, 4, 5, 3, 4]`
`[12.8, 7.9, 13.9, 13.2, 9.7, 14.1, 12.2, 9.9, 17.1, 17.5, 14.3, 10.0, 20.4, 4.8]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `3` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `5` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.0, 15.7, 12.0, 12.8, 10.8, 7.5, 3.0, 6.9, 5.5, 12.8, 7.1, 13.9, 13.5, 12.5]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[9.7, 11.4, 4.6, 12.0, 15.4, 13.3, 13.4, 10.2, 10.4, 10.3, 8.2, 7.4, 7.0, 3.5]`
`[10.5, 9.0, 2.0, 5.0, 7.2, 15.3, 8.7, 9.6, 9.4, 5.4, 16.8, 6.2, 16.5, 7.8]`
1. Czy pojedynczy student który zebrał `5.6` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[9.5, 11.7, 3.5, 13.2, 7.7, 10.4, 13.7, 16.9, 14.8, 15.1, 8.1, 9.6, 14.1, 19.0]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 16 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `45%` wszystkich odpowiedzi.
* ABC vs ???:
`0:1, 0:0, 0:1, 0:0, 2:0, 2:1, 3:1, 2:1, 2:1, 2:0, 3:2, 2:0, 0:1, 1:3, 1:1, 2:1`
* XYZ vs ???:
`3:1, 2:4, 3:3, 5:2, 3:1, 1:3, 6:3, 3:2, 3:4, 4:4, 1:1, 3:5, 2:4, 3:3, 3:3, 3:0`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `45%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+7.2 %` wagi,
* `+14.8 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[303, 299, 278, 305, 293, 279, 323, 325, 306, 280, 343, 249, 229, 314, 292, 297, 285, 265, 238, 261]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `16` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ.
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

View File

@ -3,77 +3,65 @@ ID_testu: 440474
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[7, 3, 3, 7, 7, 4, 4, 6, 1, 6, 7, 7, 5, 3, 4, 2, 4, 7, 3]` Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Grupa testowa: `[5, 0, 1, 10, 0, 5, 6, 6, 4, 3, 5, 7, 2, 4, 8, 4, 0]` Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. `Studenci: [100.0, 32.4, 61.5, 52.8, 78.5, 71.2, 38.1, 47.2, 73.1, 31.0, 44.4, 92.1, 40.2, 11.5, 63.9, 57.0]`
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku? `Prowadzący: [56.3, 21.0, 23.0, 72.7, 73.3, 48.4, 41.7, 72.3, 13.2, 57.9, 58.5, 74.5, 49.3, 47.2, 35.0, 31.3]`
Dlaczego?
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że prowadzący mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Na polach eksperymentalnych po obu stronach drogi zasiano groszek zielony typu A. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Z pól po lewej stronie drogi zebrano
`[3.1, 2.2, 2.36, 4.15, 2.65, 3.23, 3.06, 3.57, 3.42, 2.76, 2.94, 3.46]` Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `17` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[3, 6, 5, 6, 5, 3, 3, 4, 4, 3, 3, 4, 5, 3, 5, 4, 5]`
* dla `XYZ`: `[4, 4, 3, 3, 3, 4, 3, 3, 3, 4, 4, 5, 4, 3, 4, 5, 4]`
[kg groszku]. Zbiór z pól po prawej stronie zaowocował 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[2.84, 3.3, 4.97, 3.16, 2.15, 3.99, 3.75, 3.72, 2.49, 2.56, 4.29, 4.31]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
[kg groszku].
Na podstawie tych danych ustalono, że nie ma różnicy między jakością gleby po obu stronach drogi, więc pola nadają się do testowania dwóch różnych odmian groszku.
Groszek typu B, zasiany po prawej stronie drogi wyprodukował odpowiednio
`[3.26, 3.09, 3.86, 2.38, 3.5, 3.51, 3.91, 3.28, 3.23, 2.93, 2.83, 3.16]`
[kg groszku]
1. Czy można stwierdzić, że groszek B jest bardziej plenny niż groszek A?
2. Czy jedynym wyjaśnieniem (potencjalnej) różnicy pomiędzy plonami groszku A i B jest różnica między typami?
3. Czy popełniono (a jeśli tak, to jakiego rodzaju?) błąd uznając że pola po obu stronach drogi się nie różnią?
**Zadanie 3:** **Zadanie 3:**
W przyszłym tygodniu grają w piłkę nożną drużyny ABC i XYZ. Ostatnie 17 meczy każdej z drużn skończyły się następującymi wynikami: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `57%` wszystkich odpowiedzi.
* ABC vs ???:
`2:2, 0:3, 1:1, 2:3, 2:1, 3:3, 1:0, 2:0, 1:0, 0:0, 1:0, 1:0, 0:2, 1:1, 1:2, 1:3, 1:1`
* XYZ vs ???:
`1:4, 4:4, 1:3, 2:3, 0:3, 3:2, 1:1, 3:4, 3:3, 1:3, 3:5, 1:6, 5:3, 0:5, 4:6, 2:4, 2:3`
W jaki sposób (korzystając z metod statystycznych) można ocenić na którą drużynę powinniśmy obstawiać? 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
> `TAK` stanowi nie więcej niż `57%` wszystkich odpowiedzi.
**Zadanie 4:** **Zadanie 4:**
Spotkany w pociągu jasnowidz twierdzi, że przewiduje przyszłość (tj. robi to lepiej niż my, zgadując). Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Wykorzystując ponad godzinne opóźnienie pociągu postanowiliście poddać próbie jego zdolności.
Zaplanuj prosty eksperyment (z rzutem monetą) który pozwoli potwierdzić statystycznie czy faktycznie posiada on zdolności które reklamuje.
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
1. Jaka jest hipoteza zerowa? * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest teoretyczny rozkład ilości sukcesów (tj. jasnowidz trafnie przewidział przyszłość)?
4. Ile razy (minimalnie) musimy rzucić monetą aby w ogóle móc odrzucić hipotezę zerową?
5. Na peronie wykonaliście `51` powtórzeń eksperymentu w których jasnowidz trafnie przewidział przyszłość `22` razy.
Czy można powiedzieć, że posiada on nadzwyczajne zdolności?
6. Pociąg był opóźniony dodatkowe 2h w trakcie których wykonaliście `501` powtórzeń eksperymentu,
w których jasnowidz trafnie przewidział `237` wyniki. Co mówi to o jego zdolnościach?
Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
**Zadanie 5:** * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
Planujesz badać wpływ alkoholu na refleks człowieka. Dysponujesz już grupą `17` wyjątkowo chętnych ochotników.
1. Zaprojektuj eksperyment który pozwoli ustalić ten wpływ. 1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową. 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.

106
440479.md
View File

@ -1,91 +1,67 @@
ID_testu: 440479 ID_testu: 440479
**Zadanie 1:** **Zadanie 1:**
Testujemy nowy lek na ból istnienia. Naukowcy postanowili odpowiedzieć na pytanie:
Zarówno grupa kontrolna (otrzymują cukier w kapsułkach) jak i testowa (otrzymają lek w pigułkach) składa się z osób cierpiących na to schorzenie.
Uczestnicy zaraportowali następujące poziomy bólu: > Kto ma lepsze poczucie humoru: studenci czy prowadzący.
Grupa kontrolna: `[6, 7, 5, 7, 6, 5, 7, 10, 3, 2, 5, 5, 5, 4, 3, 4, 7, 5]` Każdej z osobie z grup składających się ze studentów i prowadzących pokazano 30 komiksów prosząc o zaklasyfikowanie ich jako "zabawne" albo "niezbyt zabawne".
Grupa testowa: `[6, 4, 6, 3, 6, 3, 8, 5, 4, 3, 1, 8, 7, 5, 6, 3, 3, 7]` Procent komisków zaklasyfikowanych jako "zabawne" widoczny jest poniżej:
1. Oceń czy lek ma istotny wpływ na poziom bólu istnienia. `Studenci: [39.3, 50.9, 51.7, 62.3, 50.2, 57.3, 34.6, 44.4, 48.3, 65.4, 47.3, 54.2, 43.7]`
2. Czy z punktu widzenia statystycznej istotności lepiej jest porównywać dwie grupy, czy mierzyć (u wszystkich pacjentów) poziom bólu przed i po podaniu leku? `Prowadzący: [32.4, 67.5, 42.8, 34.7, 66.7, 62.9, 36.3, 55.6, 46.8, 49.5, 69.4, 84.8, 51.8]`
Dlaczego?
1. Jakie 2 populacje będziemy porównywać?
2. Czy w związku z tym, że studentom i prowadzącym pokazano te same komiksy możemy użyć testu sparowanego?
3. Jaka jest hipoteza zerowa?
4. Jaka jest hipoteza alternatywna?
5. Przeprowadzić test statystyczny który pozwoli nam potwierdzić lub obalić hipotezę zerową.
6. Czy, a jeśli tak, to jakiego typu błąd popełnilibyśmy, gdyby z późniejszych badań wynikło, że studenci mają lepsze poczucie humoru?
**Zadanie 2:** **Zadanie 2:**
Ponieważ w stołówce zabrakło ziemniaków na obiad, w ramach praktyk studenckich wszystkie grupy które miały tego dnia zajęcia z matematyki zostały wysłane na pobliskie pole w celu wykopania brakujących bulw. [Rozkład Poissona](https://pl.wikipedia.org/wiki/Rozk%C5%82ad_Poissona) określa prawdopodobieństwo zajścia określonej liczby zdarzeń, które dzieją się z taką samą (średnią) częstością. Prawdopodobieństwo zajścia dokładnie `k` zdarzeń zadane jest wzorem `Poissᵧ(zaszło k-zdarzeń) = e⁻ᵞ⋅γᵏ/k!`, gdzie `γ` jest średnią częstością zdarzeń.
Na pola wyszło 3 grup studentów.
Poniżej przedstawiony jest urobek każdego studenta (w kilogramach), z podziałem na grupy: Możemy przyjąć, że liczba uderzeń które potrzebuje golfista aby trafić do dołka jest rozłożona zgodnie z rozkładem `3+Poissᵧ` (różne `γ` dla różnych golfistów). W przyszłym tygodniu w turnieju biorą udział golfiści `ABC` i `XYZ`.
W trakcie ostatniego turnieju (rozgrywanego na `15` dołkach) każdy z golfistów potrzebował następującej liczby uderzeń zanim wbił piłkę do dołka:
* dla `ABC`: `[5, 6, 5, 4, 3, 3, 4, 3, 5, 5, 3, 4, 4, 5, 3]`
* dla `XYZ`: `[3, 3, 4, 4, 3, 4, 3, 3, 5, 4, 3, 4, 4, 6, 4]`
`[16.6, 7.8, 15.3, 7.3, 10.2, 10.4, 13.1, 10.0, 11.8, 6.2, 8.6, 9.6, 13.8, 9.3, 11.1, 8.4]` 0. W jaki sposób przybliżyć `γ` (średnią częstość trafienia) dla różnych golfistów?
1. Oszacuj prawdopowobieństwo, że grając do jednego dołka golfista `ABC` będzie potrzebował conajwyżej `5` uderzeń.
2. Oszacuj prawdopodobieństwo, że grając do jednego dołka golfista `XYZ` będzie potrzebował więcej niż `6` uderzeń.
3. Jeśli do jednego dołka będą grać zarówno `ABC` jak i `XYZ` jakie jest prawdopodobieństwo, że `ABC` będzie potrzebował `3` uderzeń, i równocześnie `XYZ``5`?
4. Jeśli o zwycięstwie decyduje tylko liczba uderzeń potrzebnych do trafienia do dołka (mniej wygrywa), na którego z graczy powinniśmy obstawiać?
`[5.6, 14.4, 8.2, 6.2, 14.2, 13.2, 6.6, 11.4, 9.2, 9.9, 14.9, 18.7, 10.5, 5.7, 15.4, 10.9]` > Funkcje z rozkładu Poissona są dostępne np. języku `julia` w pakiecie `StatsFuns`. Ich nazwy rozpoczynają się od `pois`, e.g. `poispdf(γ, 3)` powie jakie jest prawdopodobieństwo wystąpienia dokładnie `3` zdarzeń o średniej częstości występowania `γ`)
`[10.7, 7.4, 8.1, 10.5, 15.0, 10.6, 9.7, 16.6, 7.7, 8.9, 13.2, 13.2, 9.7, 5.0, 2.0, 14.9]`
1. Czy pojedynczy student który zebrał `2.1` [kg ziemniaków] jest wyjątkowo leniwym studentem?
2. Czy grupa kierunku Astrologia której uczestnicy zebrali
`[4.4, 4.9, 8.4, 17.2, 16.6, 7.4, 10.3, 5.9, 20.7, 13.5, 3.0, 11.8, 12.4, 12.0, 11.0, 9.8]`
(kg. ziemniaków) wyróżnia się w sposób statystycznie istotny?
**Zadanie 3:** **Zadanie 3:**
Badając poziom wskaźnika hematokrytowego u grupy ludzi otrzymano następujące wyniki: Masz wykonać eksperyment w którym możliwe wyniki są `TAK` i `NIE`. Hipotezą zerową brzmi
> `TAK` stanowi `71%` wszystkich odpowiedzi.
`[45.3, 46.53, 45.86, 46.58, 45.68, 48.31, 40.66, 47.55, 46.46, 47.32, 42.22, 45.97, 48.15, 47.97, 47.42, 46.79, 44.64, 47.01, 42.11, 40.89, 46.87, 43.53, 45.85, 48.26]` 1. Jak będzie wyglądał eksperyment pozwalający potwierdzić lub odrzucić hipotezę zerową?
2. Jak brzmi hipoteza alternatywna?
3. Czy rozkład uzyskanych odpowiedzi będzie dyskretny czy ciągły?
4. Jaki jest teoretyczny rozkład uzyskanych odpowiedzi?
5. Ustal minimalną liczbę powtórzeń eksperymentu której wykonanie może obalić hipotezę zerową (przy poziomie istotności `0.05`)
6. Czy ta minimalna liczba powtórzeń eksperymentu ulegnie zmianie jeśli hipoteza zerowa będzie brzmiała:
Po podaniu leku XYZ wyniki były następujące: > `TAK` stanowi nie więcej niż `71%` wszystkich odpowiedzi.
`[38.19, 52.42, 50.37, 49.07, 47.97, 51.24, 38.04, 51.17, 50.98, 50.5, 34.17, 44.54, 53.53, 49.31, 52.72, 50.32, 39.89, 50.65, 35.97, 34.71, 50.35, 39.17, 48.02, 51.53]`
Czy lek XYZ ma jakikolwiek wpływ na wskaźnik hematokrytowy?
Po wykonaniu analizy okazało się, że grupa liczyła 7 kobiet i 17 mężczyzn. Ich wyniki to
* Kobiety:
- przed: `[45.3, 40.89, 44.64, 40.66, 42.11, 42.22, 43.53]`
- po: `[38.19, 34.71, 39.89, 38.04, 35.97, 34.17, 39.17]`
* Mężczyźni:
- przed: `[47.01, 47.55, 45.85, 46.58, 46.87, 48.15, 46.79, 47.32, 46.53, 45.68, 48.31, 46.46, 45.86, 48.26, 47.97, 45.97, 47.42]`
- po: `[50.65, 51.17, 48.02, 49.07, 50.35, 53.53, 50.32, 50.5, 52.42, 47.97, 51.24, 50.98, 50.37, 51.53, 49.31, 44.54, 52.72]`
Co teraz można powiedzieć o skuteczności leku XYZ?
**Zadanie 4:** **Zadanie 4:**
Prowadzimy badania na szczurach. Studenci piszący egzamin zostali podzieleni na dwie grupy (`A` i `B`) ze względu na oceny które otrzymali:
Przypuszczamy, że podawanie antybiotyków w pożywieniu będzie miało wpływ na wielkość osobników rzędu
* `+11.3 %` wagi,
* `+17.0 %` większa wariancja wagi.
Ponieważ nie można przeprowadzić badań na zwierzętach bez zgody Komisji Etyki Badań, musisz zaplanować wcześniej eksperyment i przekonać Komisję. W szczególności musisz przewidzieć ile zwierząt potrzeba by uzyskać statystycznie istotny wynik. * `A = [46.25, 28.75, 52.5, 51.25, 47.5, 33.75, 31.25, 12.5, 42.5, 11.25, 56.25, 46.25, 6.25, 46.25, 43.75]`
Dysponujesz już pomiarami wag grupy kontrolnej: * `B = [95.0, 77.5, 83.75, 77.5, 95.0, 95.0, 73.75, 86.25, 73.75]`
wagi = `[316, 262, 282, 283, 301, 280, 292, 254, 270, 277, 306, 275, 287, 269, 250, 310, 268, 254]` Dodatkowo została wyróżniona grupa studentów których ocena została zdeterminowana innymi powodami:
0. Opisz zaplanowany eksperyment (co i z czym będzie porównywane) * `C = [0.0, 46.25, 32.5, 52.5, 43.75, 28.75, 51.25, 36.25, 40.0, 52.5]`
1. Jaka jest hipoteza zerowa?
2. Czy należy użyć testu jedno-, czy dwu-stronnego?
3. Jaki jest (teoretyczny) rozkład do którego będziemy porównywać wyliczoną statystykę?
4. Ile (minimalnie) zwierząt należy użyć aby móc wykazać statystycznie istotną różnicę
między grupą przyjmującą antybiotyki a grupą kontrolną?
1. Czy istnieje istotna statystycznie różnica pomiędzy tymi grupami, czy może zostały wzięte z tej samej populacji?
**Zadanie 5:** 2. Czy grupa `C` została wzięta z tej samej populacji co grupy `A` lub `B`?
Znane powiedzenie mówi _Sport to zdrowie_. Dysponujesz grupami:
* `25` zawodowych sportowców;
* `22` ludzi uprawiających sport rekreacyjnie.
1. Zaprojektuj eksperyment który pozwoli sprawdzić, czy powiedzenie pokrywa się z rzeczywistością (w jaki sposób ocenić sprawność? co to jest zdrowie? jakie pytania należy zadać sportowcom i nie-sportowcom? itd.)
2. Sprawdź znaną literaturę (citations needed!) aby ustalić hipotezę zerową.
3. Czy będziemy używać testu jedno-, czy dwu-stronnego?
4. Opisz zaplanowaną analizę statystyczną dla uzyskanych wyników.