lectures_on_knot_theory/lectures_on_knot_theory.tex

764 lines
24 KiB
TeX
Raw Normal View History

2019-05-04 18:28:09 +02:00
\documentclass[12pt, twoside]{article}
2019-05-29 20:16:36 +02:00
2019-05-04 18:28:09 +02:00
\usepackage{amssymb}
\usepackage{amsmath}
2019-05-29 20:16:36 +02:00
\usepackage{advdate}
\usepackage{amsthm}
2019-05-04 18:28:09 +02:00
\usepackage[english]{babel}
2019-05-29 20:16:36 +02:00
2019-06-25 04:58:03 +02:00
\usepackage{caption}
2019-05-29 20:16:36 +02:00
\usepackage{comment}
2019-05-04 18:28:09 +02:00
\usepackage{csquotes}
2019-05-29 20:16:36 +02:00
\usepackage[useregional]{datetime2}
\usepackage{enumitem}
\usepackage{fontspec}
2019-05-04 18:28:09 +02:00
\usepackage{float}
2019-05-29 20:16:36 +02:00
\usepackage{graphicx}
2019-05-28 00:13:20 +02:00
\usepackage{hyperref}
2019-05-29 20:16:36 +02:00
\usepackage{mathtools}
\usepackage{pict2e}
2019-06-25 04:58:03 +02:00
\usepackage[section]{placeins}
2019-05-29 20:16:36 +02:00
\usepackage[pdf]{pstricks}
2019-05-29 15:54:14 +02:00
\usepackage{tikz}
2019-05-29 20:16:36 +02:00
\usepackage{titlesec}
\usepackage{xfrac}
\usepackage{unicode-math}
2019-06-14 21:37:33 +02:00
2019-05-29 15:54:14 +02:00
\usetikzlibrary{cd}
2019-05-29 20:16:36 +02:00
2019-05-28 00:13:20 +02:00
\hypersetup{
colorlinks,
citecolor=black,
filecolor=black,
linkcolor=black,
urlcolor=black
}
2019-05-04 18:28:09 +02:00
2019-05-29 20:16:36 +02:00
\newtheoremstyle{break}
{\topsep}{\topsep}%
{\itshape}{}%
{\bfseries}{}%
{\newline}{}%
\theoremstyle{break}
2019-06-08 13:33:05 +02:00
2019-06-03 04:22:10 +02:00
\newtheorem{lemma}{Lemma}[section]
\newtheorem{fact}{Fact}[section]
\newtheorem{corollary}{Corollary}[section]
\newtheorem{proposition}{Proposition}[section]
\newtheorem{example}{Example}[section]
2019-06-08 13:33:05 +02:00
\newtheorem{problem}{Problem}[section]
2019-06-03 04:22:10 +02:00
\newtheorem{definition}{Definition}[section]
\newtheorem{theorem}{Theorem}[section]
2019-06-08 13:33:05 +02:00
2019-05-29 20:16:36 +02:00
\newcommand{\contradiction}{%
\ensuremath{{\Rightarrow\mspace{-2mu}\Leftarrow}}}
2019-05-28 00:13:20 +02:00
\newcommand*\quot[2]{{^{\textstyle #1}\big/_{\textstyle #2}}}
2019-06-03 04:22:10 +02:00
2019-05-29 20:16:36 +02:00
\newcommand{\overbar}[1]{%
\mkern 1.5mu=\overline{%
\mkern-1.5mu#1\mkern-1.5mu}%
\mkern 1.5mu}
2019-06-03 04:22:10 +02:00
\newcommand{\sdots}{\smash{\vdots}}
2019-06-09 16:47:28 +02:00
\DeclareRobustCommand\longtwoheadrightarrow
{\relbar\joinrel\twoheadrightarrow}
2019-06-09 21:43:06 +02:00
\newcommand{\longhookrightarrow}{\lhook\joinrel\longrightarrow}
\newcommand{\longhookleftarrow}{\longleftarrow\joinrel\rhook}
2019-06-08 13:33:05 +02:00
2019-05-29 20:16:36 +02:00
\AtBeginDocument{\renewcommand{\setminus}{%
\mathbin{\backslash}}}
2019-05-28 00:13:20 +02:00
\DeclareMathOperator{\Hom}{Hom}
2019-05-29 15:54:14 +02:00
\DeclareMathOperator{\rank}{rank}
2019-06-25 04:58:03 +02:00
\DeclareMathOperator{\coker}{coker}
2019-06-09 16:47:28 +02:00
\DeclareMathOperator{\ord}{ord}
2019-06-25 19:19:17 +02:00
\DeclareMathOperator{\ess}{ess}
2019-06-22 06:24:32 +02:00
\DeclareMathOperator{\mytop}{top}
2019-06-09 16:47:28 +02:00
\DeclareMathOperator{\Gl}{GL}
\DeclareMathOperator{\Sl}{SL}
2019-06-08 13:33:05 +02:00
\DeclareMathOperator{\Lk}{lk}
2019-06-09 16:47:28 +02:00
\DeclareMathOperator{\pt}{\{pt\}}
2019-06-17 17:08:38 +02:00
\DeclareMathOperator{\sign}{sign}
2019-06-08 13:33:05 +02:00
2019-06-15 13:13:24 +02:00
\titleformat{\subsection}{%
\normalfont \fontsize{12}{15}\bfseries}{%
}{.0ex plus .2ex}{}
\titleformat{\section}{%
\normalfont \fontsize{13}{15} \bfseries}{%
2019-06-03 04:22:10 +02:00
Lecture\ \thesection}%
{2.3ex plus .2ex}{}
\titlespacing*{\section}
{0pt}{16.5ex plus 1ex minus .2ex}{4.3ex plus .2ex}
2019-05-29 20:16:36 +02:00
2019-06-03 04:22:10 +02:00
\setlist[itemize]{topsep=0pt,before=%
\leavevmode\vspace{0.5em}}
2019-05-29 20:16:36 +02:00
2019-05-04 18:28:09 +02:00
2019-05-28 00:13:20 +02:00
\input{knots_macros}
2019-05-29 20:16:36 +02:00
\graphicspath{ {images/} }
2019-05-04 18:28:09 +02:00
\begin{document}
2019-05-29 15:54:14 +02:00
\tableofcontents
2019-05-28 00:13:20 +02:00
%\newpage
2019-05-04 18:28:09 +02:00
%\input{myNotes}
2019-06-03 04:22:10 +02:00
\section{Basic definitions \hfill\DTMdate{2019-02-25}}
2019-06-25 19:19:17 +02:00
%\input{lec_1.tex}
2019-06-03 04:22:10 +02:00
2019-06-15 13:13:24 +02:00
\section{Alexander polynomial \hfill\DTMdate{2019-03-04}}
2019-06-25 19:19:17 +02:00
%\input{lec_2.tex}
2019-06-15 13:13:24 +02:00
%add Hurewicz theorem?
2019-06-02 17:27:46 +02:00
2019-06-20 21:07:49 +02:00
2019-06-25 04:58:03 +02:00
\section{Examples of knot classes
\hfill\DTMdate{2019-03-11}}
2019-06-25 19:19:17 +02:00
%\input{lec_3.tex}
2019-06-03 04:22:10 +02:00
2019-06-15 13:13:24 +02:00
\section{Concordance group \hfill\DTMdate{2019-03-18}}
2019-06-25 19:19:17 +02:00
%\input{lec_4.tex}
2019-06-07 15:53:13 +02:00
2019-06-25 04:58:03 +02:00
\section{Genus $g$ cobordism \hfill\DTMdate{2019-03-25}}
2019-06-25 19:19:17 +02:00
%\input{lec_5.tex}
2019-06-09 21:43:06 +02:00
2019-05-29 15:54:14 +02:00
\section{\hfill\DTMdate{2019-04-08}}
2019-06-25 04:58:03 +02:00
\input{lec_6.tex}
2019-06-07 18:57:28 +02:00
2019-05-29 15:54:14 +02:00
\section{\hfill\DTMdate{2019-04-15}}
2019-06-25 19:19:17 +02:00
???????????????????\\
2019-06-22 06:24:32 +02:00
\begin{theorem}
Suppose that $K \subset S^3$ is a slice knot (i.e. $K$ bound a disk in $B^4$).
Then if $F$ is a Seifert surface of $K$ and $V$ denotes the associated Seifet matrix, then there exists $P \in \Gl_g(\mathbb{Z})$ such that:
\\??????????????? T ????????
\begin{align}
PVP^{-1} =
\begin{pmatrix}
0 & A\\
B & C
\end{pmatrix}, \quad A, C, C \in M_{g \times g} (\mathbb{Z})
\end{align}
\end{theorem}
In other words you can find rank $g$ direct summand $\mathcal{Z}$ of $H_1(F)$ \\
????????????\\
such that for any
$\alpha, \beta \in \mathcal{L}$ the linking number $\Lk (\alpha, \beta^+) = 0$.
\begin{definition}
An abstract Seifert matrix (i. e.
\end{definition}
2019-05-29 15:54:14 +02:00
Choose a basis $(b_1, ..., b_i)$ \\
???\\
of $H_2(Y, \mathbb{Z}$, then $A = (b_i, b_y)$ \\??\\ is a matrix of intersection form:
\begin{align*}
\quot{\mathbb{Z}^n}{A\mathbb{Z}^n} \cong H_1(Y, \mathbb{Z}).
\end{align*}
2019-06-22 06:24:32 +02:00
In particular $\vert \det A\vert = \# H_1(Y, \mathbb{Z})$.\\
2019-05-29 15:54:14 +02:00
That means - what is happening on boundary is a measure of degeneracy.
2019-06-03 04:22:10 +02:00
2019-05-29 15:54:14 +02:00
\begin{center}
\begin{tikzcd}
[
2019-06-03 04:22:10 +02:00
column sep=tiny,
row sep=small,
ar symbol/.style =%
{draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
2019-05-29 15:54:14 +02:00
]
2019-06-03 04:22:10 +02:00
H_1(Y, \mathbb{Z}) &
\times \quad H_1(Y, \mathbb{Z})&
\longrightarrow &
\quot{\mathbb{Q}}{\mathbb{Z}}
\text{ - a linking form}
2019-05-29 15:54:14 +02:00
\\
2019-06-03 04:22:10 +02:00
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &
\quot{\mathbb{Z}^n}{A\mathbb{Z}} \ar[u,isomorphic] &\\
2019-05-29 15:54:14 +02:00
\end{tikzcd}
$(a, b) \mapsto aA^{-1}b^T$
\end{center}
2019-06-09 16:47:28 +02:00
?????????????????????????????????\\
\noindent
2019-05-29 15:54:14 +02:00
The intersection form on a four-manifold determines the linking on the boundary. \\
\noindent
Let $K \in S^1$ be a knot, $\Sigma(K)$ its double branched cover. If $V$ is a Seifert matrix for $K$, then
$H_1(\Sigma(K), \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}$ where
2019-06-09 16:47:28 +02:00
$A = V \times V^T$, $n = \rank V$.
2019-05-29 15:54:14 +02:00
%\input{ink_diag}
2019-06-07 15:53:13 +02:00
\begin{figure}[h]
2019-06-09 16:47:28 +02:00
\fontsize{20}{10}\selectfont
2019-05-29 15:54:14 +02:00
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4.pdf_tex}}
\caption{Pushing the Seifert surface in 4-ball.}
\label{fig:pushSeifert}
}
\end{figure}
\noindent
Let $X$ be the four-manifold obtained via the double branched cover of $B^4$ branched along $\widetilde{\Sigma}$.
\begin{fact}
\begin{itemize}
\item $X$ is a smooth four-manifold,
\item $H_1(X, \mathbb{Z}) =0$,
\item $H_2(X, \mathbb{Z}) \cong \mathbb{Z}^n$
\item The intersection form on $X$ is $V + V^T$.
\end{itemize}
\end{fact}
2019-06-09 16:47:28 +02:00
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_pushed_cycle.pdf_tex}}
\caption{Cycle pushed in 4-ball.}
\label{fig:pushCycle}
}
\end{figure}
2019-05-29 15:54:14 +02:00
\noindent
Let $Y = \Sigma(K)$. Then:
2019-06-09 16:47:28 +02:00
\begin{align*}
H_1(Y, \mathbb{Z}) \times H_1(Y, \mathbb{Z}) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}
2019-06-07 14:44:18 +02:00
\\
2019-06-09 16:47:28 +02:00
(a,b) &\mapsto a A^{-1} b^{T},\qquad
A = V + V^T.
\end{align*}
????????????????????????????
2019-06-25 19:19:17 +02:00
\\
We have a primary decomposition of $H_1(Y, \mathbb{Z}) = U$ (as a group). For any $p \in \mathbb{P}$ we define $U_p$ to be the subgroup of elements annihilated by the same power of $p$. We have $U = \bigoplus_p U_p$.
\begin{example}
\begin{align*}
\text{If } U &=
\mathbb{Z}_3 \oplus
\mathbb{Z}_{45} \oplus
\mathbb{Z}_{15} \oplus
\mathbb{Z}_{75}
\text{ then }\\
U_3 &=
\mathbb{Z}_3 \oplus
\mathbb{Z}_9 \oplus
\mathbb{Z}_3 \oplus
\mathbb{Z}_3
\text{ and }\\
U_5 &=
(e) \oplus
\mathbb{Z}_5 \oplus
\mathbb{Z}_5 \oplus
\mathbb{Z}_{25}.
\end{align*}
\end{example}
\begin{lemma}
Suppose $x \in U_{p_1}$, $y \in U_{p_2}$ and $p_1 \neq p_2$. Then $<x, y > = 0$.
\end{lemma}
\begin{proof}
\begin{align*}
x \in U_{p_1}
\end{align*}
\end{proof}
2019-06-09 16:47:28 +02:00
\begin{align*}
H_1(Y, \mathbb{Z}) \cong \quot{\mathbb{Z}^n}{A\mathbb{Z}}\\
A \longrightarrow BAC^T \quad \text{Smith normal form}
\end{align*}
2019-05-29 15:54:14 +02:00
???????????????????????\\
In general
2019-06-09 16:47:28 +02:00
%no lecture at 29.04
2019-05-29 15:54:14 +02:00
\section{\hfill\DTMdate{2019-05-20}}
2019-06-08 13:33:05 +02:00
Let $M$ be compact, oriented, connected four-dimensional manifold. If ${H_1(M, \mathbb{Z}) = 0}$ then there exists a
2019-05-29 15:54:14 +02:00
bilinear form - the intersection form on $M$:
\begin{center}
\begin{tikzcd}
[
column sep=tiny,
row sep=small,
ar symbol/.style = {draw=none,"\textstyle#1" description,sloped},
isomorphic/.style = {ar symbol={\cong}},
]
H_2(M, \mathbb{Z})&
\times & H_2(M, \mathbb{Z})
\longrightarrow &
\mathbb{Z}
\\
\ar[u,isomorphic] \mathbb{Z}^n && &\\
\end{tikzcd}
\end{center}
\noindent
Let us consider a specific case: $M$ has a boundary $Y = \partial M$.
2019-06-07 15:13:19 +02:00
Betti number $b_1(Y) = 0$, $H_1(Y, \mathbb{Z})$ is finite.
Then the intersection form can be degenerated in the sense that:
\begin{align*}
H_2(M, \mathbb{Z})
2019-05-29 15:54:14 +02:00
\times H_2(M, \mathbb{Z})
2019-06-07 15:53:13 +02:00
&\longrightarrow
\mathbb{Z} \quad&
H_2(M, \mathbb{Z}) &\longrightarrow \Hom (H_2(M, \mathbb{Z}), \mathbb{Z})\\
(a, b) &\mapsto \mathbb{Z} \quad&
a &\mapsto (a, \_) H_2(M, \mathbb{Z})
2019-05-29 20:16:36 +02:00
\end{align*}
has coker precisely $H_1(Y, \mathbb{Z})$.
\\???????????????\\
2019-06-25 04:58:03 +02:00
Let $K \subset S^3$ be a knot, $X = S^3 \setminus K$ a knot complement and
$\widetilde{X} \xrightarrow{\enspace \rho \enspace} X$ an infinite cyclic cover (universal abelian cover). By Hurewicz theorem we know that:
2019-05-28 00:13:20 +02:00
\begin{align*}
\pi_1(X) \longrightarrow \quot{\pi_1(X)}{[\pi_1(X), \pi_1(X)]} = H_1(X, \mathbb{Z} ) \cong \mathbb{Z}
\end{align*}
2019-06-25 04:58:03 +02:00
????????????????????????????????????????????????????????????????????????\\
????????????????????????????????????????????????????????????????????????\\
????????????????????????????????????????????????????????????????????????\\
????????????????????????????????????????????????????????????????????????\\
2019-05-28 00:13:20 +02:00
$C_{*}(\widetilde{X})$ has a structure of a $\mathbb{Z}[t, t^{-1}] \cong \mathbb{Z}[\mathbb{Z}]$ module. \\
2019-06-25 04:58:03 +02:00
Let $H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}])$ be the Alexander module of the knot $K$ with an intersection form:
2019-05-28 00:13:20 +02:00
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}
\end{align*}
\begin{fact}
\begin{align*}
2019-05-29 15:54:14 +02:00
&H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \cong
\quot{\mathbb{Z}{[t, t^{-1}]}^n}{(tV - V^T)\mathbb{Z}[t, t^{-1}]^n}\;, \\
&\text{where $V$ is a Seifert matrix.}
2019-05-28 00:13:20 +02:00
\end{align*}
\end{fact}
\begin{fact}
\begin{align*}
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) \times
H_1(\widetilde{X}, \mathbb{Z}[t, t^{-1}]) &\longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}[t, t^{-1}]}\\
2019-06-25 04:58:03 +02:00
(\alpha, \beta) \quad &\mapsto \alpha^{-1}(t -1)(tV - V^T)^{-1}\beta
2019-05-28 00:13:20 +02:00
\end{align*}
\end{fact}
\noindent
2019-06-25 04:58:03 +02:00
Note that $\mathbb{Z}$ is not PID.
Therefore we don't have primary decomposition of this module.
We can simplify this problem by replacing $\mathbb{Z}$ by $\mathbb{R}$. We lose some date by doing this transition, but we can
2019-06-07 15:53:13 +02:00
\begin{align*}
2019-06-25 04:58:03 +02:00
\xi \in S^1 \setminus \{ \pm 1\}
&\quad
2019-05-28 00:13:20 +02:00
p_{\xi} =
2019-06-07 15:53:13 +02:00
(t - \xi)(t - \xi^{-1}) t^{-1}
\\
2019-06-25 04:58:03 +02:00
\xi \in \mathbb{R} \setminus \{ \pm 1\}
&\quad
2019-06-07 15:53:13 +02:00
q_{\xi} = (t - \xi)(t - \xi^{-1}) t^{-1}
\\
2019-06-25 04:58:03 +02:00
\xi \notin \mathbb{R} \cup S^1
&\quad
q_{\xi} = (t - \xi)(t - \overbar{\xi})(t - \xi^{-1})
(t - \overbar{\xi}^{-1}) t^{-2}
\end{align*}
Let $\Lambda = \mathbb{R}[t, t^{-1}]$. Then:
\begin{align*}
H_1(\widetilde{X}, \Lambda) \cong \bigoplus_{\substack{\xi \in S^1 \setminus \{\pm 1 \}\\ k\geq 0}}
2019-05-28 00:13:20 +02:00
( \quot{\Lambda}{p_{\xi}^k })^{n_k, \xi}
\oplus
\bigoplus_{\substack{\xi \notin S^1 \\ l\geq 0}}
2019-06-07 14:44:18 +02:00
(\quot{\Lambda}{q_{\xi}^l})^{n_l, \xi}&
2019-06-07 15:53:13 +02:00
\end{align*}
2019-05-28 00:13:20 +02:00
We can make this composition orthogonal with respect to the Blanchfield paring.
\vspace{0.5cm}\\
Historical remark:
\begin{itemize}
\item John Milnor, \textit{On isometries of inner product spaces}, 1969,
\item Walter Neumann, \textit{Invariants of plane curve singularities}
%in: Knots, braids and singulari- ties (Plans-sur-Bex, 1982), 223232, Monogr. Enseign. Math., 31, Enseignement Math., Geneva
, 1983,
\item András Némethi, \textit{The real Seifert form and the spectral pairs of isolated hypersurfaceenumerate singularities}, 1995,
%Compositio Mathematica, Volume 98 (1995) no. 1, p. 23-41
\item Maciej Borodzik, Stefan Friedl
\textit{The unknotting number and classical invariants II}, 2014.
\end{itemize}
\vspace{0.5cm}
Let $p = p_{\xi}$, $k\geq 0$.
\begin{align*}
\quot{\Lambda}{p^k \Lambda} \times
\quot{\Lambda}{p^k \Lambda} &\longrightarrow \quot{\mathbb{Q}(t)}{\Lambda}\\
(1, 1) &\mapsto \kappa\\
\text{Now: } (p^k \cdot 1, 1) &\mapsto 0\\
p^k \kappa = 0 &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\text{therfore } p^k \kappa &\in \Lambda\\
\text{we have } (1, 1) &\mapsto \frac{h}{p^k}\\
\end{align*}
$h$ is not uniquely defined: $h \rightarrow h + g p^k$ doesn't affect paring. \\
Let $h = p^k \kappa$.
\begin{example}
\begin{align*}
\phi_0 ((1, 1))=\frac{+1}{p}\\
\phi_1 ((1, 1)) = \frac{-1}{p}
\end{align*}
$\phi_0$ and $\phi_1$ are not isomorphic.
\end{example}
\begin{proof}
Let $\Phi:
\quot{\Lambda}{p^k \Lambda} \longrightarrow
\quot{\Lambda}{p^k \Lambda}$
be an isomorphism. \\
Let: $\Phi(1) = g \in \lambda$
\begin{align*}
\quot{\Lambda}{p^k \Lambda}
\xrightarrow{\enspace \Phi \enspace}&
\quot{\Lambda}{p^k \Lambda}\\
\phi_0((1, 1)) = \frac{1}{p^k} \qquad&\qquad
\phi_1((g, g)) = \frac{1}{p^k} \quad \text{($\Phi$ is an isometry).}
\end{align*}
Suppose for the paring $\phi_1((g, g))=\frac{1}{p^k}$ we have $\phi_1((1, 1)) = \frac{-1}{p^k}$. Then:
\begin{align*}
\frac{-g\overbar{g}}{p^k} = \frac{1}{p^k} &\in \quot{\mathbb{Q}(t)}{\Lambda}\\
\frac{-g\overbar{g}}{p^k} - \frac{1}{p^k} &\in \Lambda \\
-g\overbar{g} &\equiv 1\pmod{p} \text{ in } \Lambda\\
-g\overbar{g} - 1 &= p^k \omega \text{ for some } \omega \in \Lambda\\
\text{evalueting at $\xi$: }\\
\overbrace{-g(\xi)g(\xi^{-1})}^{>0} - 1 = 0 \quad \contradiction
\end{align*}
\end{proof}
????????????????????\\
\begin{align*}
g &= \sum{g_i t^i}\\
\overbar{g} &= \sum{g_i t^{-i}}\\
\overbar{g}(\xi) &= \sum g_i \xi^i \quad \xi \in S^1\\
\overbar{g}(\xi) &=\overbar{g(\xi)}
\end{align*}
Suppose $g = (t - \xi)^{\alpha} g^{\prime}$. Then $(t - \xi)^{k - \alpha}$ goes to $0$ in $\quot{\Lambda}{p^k \Lambda}$.
\begin{theorem}
Every sesquilinear non-degenerate pairing
\begin{align*}
\quot{\Lambda}{p^k} \times \quot{\Lambda}{p}
\longleftrightarrow \frac{h}{p^k}
\end{align*}
is isomorphic either to the pairing wit $h=1$ or to the paring with $h=-1$ depending on sign of $h(\xi)$ (which is a real number).
\end{theorem}
\begin{proof}
There are two steps of the proof:
\begin{enumerate}
\item
Reduce to the case when $h$ has a constant sign on $S^1$.
\item
Prove in the case, when $h$ has a constant sign on $S^1$.
\end{enumerate}
\begin{lemma}
2019-06-07 15:13:19 +02:00
If $P$ is a symmetric polynomial such that $P(\eta)\geq 0$ for all $\eta \in S^1$, then $P$ can be written as a product $P = g \overbar{g}$ for some polynomial $g$.
2019-05-28 00:13:20 +02:00
\end{lemma}
\begin{proof}[Sketch of proof]
2019-06-07 15:13:19 +02:00
Induction over $\deg P$.\\
Let $\zeta \notin S^1$ be a root of $P$, $P \in \mathbb{R}[t, t^{-1}]$. Assume $\zeta \notin \mathbb{R}$. We know that polynomial $P$ is divisible by
$(t - \zeta)$, $(t - \overbar{\zeta})$, $(t^{-1} - \zeta)$ and $(t^{-1} - \overbar{\zeta})$.
Therefore:
2019-05-28 00:13:20 +02:00
\begin{align*}
2019-06-07 15:13:19 +02:00
&P^{\prime} = \frac{P}{(t - \zeta)(t - \overbar{\zeta})(t^{-1} - \zeta)(t^{-1} - \overbar{\zeta})}\\
&P^{\prime} = g^{\prime}\overbar{g}
2019-05-28 00:13:20 +02:00
\end{align*}
2019-06-07 15:13:19 +02:00
We set $g = g^{\prime}(t - \zeta)(t - \overbar{\zeta})$ and
2019-06-22 06:24:32 +02:00
$P = g \overbar{g}$. Suppose $\zeta \in S^1$. Then $(t - \zeta)^2 \vert P$ (at least - otherwise it would change sign). Therefore:
2019-05-28 00:13:20 +02:00
\begin{align*}
2019-06-07 15:13:19 +02:00
&P^{\prime} = \frac{P}{(t - \zeta)^2(t^{-1} - \zeta)^2}\\
&g = (t - \zeta)(t^{-1} - \zeta) g^{\prime} \quad \text{etc.}
2019-05-28 00:13:20 +02:00
\end{align*}
2019-06-07 15:13:19 +02:00
The map $(1, 1) \mapsto \frac{h}{p^k} = \frac{g\overbar{g}h}{p^k}$ is isometric whenever $g$ is coprime with $P$.
2019-05-28 00:13:20 +02:00
\end{proof}
\begin{lemma}\label{L:coprime polynomials}
Suppose $A$ and $B$ are two symmetric polynomials that are coprime and that $\forall z \in S^1$ either $A(z) > 0$ or $B(z) > 0$. Then there exist
symmetric polynomials $P$, $Q$ such that
$P(z), Q(z) > 0$ for $z \in S^1$ and $PA + QB \equiv 1$.
\end{lemma}
\begin{proof}[Idea of proof]
For any $z$ find an interval $(a_z, b_z)$ such that if $P(z) \in (a_z, b_z)$ and $P(z)A(z) + Q(z)B(z) = 1$, then $Q(z) > 0$, $x(z) = \frac{az + bz}{i}$ is a continues function on $S^1$ approximating $z$ by a polynomial .
\\??????????????????????????\\
2019-06-07 14:44:18 +02:00
\begin{flalign*}
(1, 1) \mapsto \frac{h}{p^k} \mapsto \frac{g\overbar{g}h}{p^k}&\\
g\overbar{g} h + p^k\omega = 1&
\end{flalign*}
2019-05-28 00:13:20 +02:00
Apply Lemma \ref{L:coprime polynomials} for $A=h$, $B=p^{2k}$. Then, if the assumptions are satisfied,
\begin{align*}
Ph + Qp^{2k} = 1\\
p>0 \Rightarrow p = g \overbar{g}\\
p = (t - \xi)(t - \overbar{\xi})t^{-1}\\
\text{so } p \geq 0 \text{ on } S^1\\
p(t) = 0 \Leftrightarrow
t = \xi or t = \overbar{\xi}\\
h(\xi) > 0\\
h(\overbar{\xi})>0\\
g\overbar{g}h + Qp^{2k} = 1\\
g\overbar{g}h \equiv 1 \mod{p^{2k}}\\
g\overbar{g} \equiv 1 \mod{p^k}
\end{align*}
???????????????????????????????\\
2019-05-29 15:54:14 +02:00
If $P$ has no roots on $S^1$ then $B(z) > 0$ for all $z$, so the assumptions of Lemma \ref{L:coprime polynomials} are satisfied no matter what $A$ is.
2019-05-28 00:13:20 +02:00
\end{proof}
?????????????????\\
\begin{align*}
(\quot{\Lambda}{p_{\xi}^k} \times
\quot{\Lambda}{p_{\xi}^k}) &\longrightarrow
\frac{\epsilon}{p_{\xi}^k}, \quad \xi \in S^1 \setminus\{\pm 1\}\\
(\quot{\Lambda}{q_{\xi}^k} \times
\quot{\Lambda}{q_{\xi}^k}) &\longrightarrow
\frac{1}{q_{\xi}^k}, \quad \xi \notin S^1\\
\end{align*}
??????????????????? 1 ?? epsilon?\\
2019-06-09 21:43:06 +02:00
\begin{theorem}(Matumoto, Borodzik-Conway-Politarczyk)
2019-05-28 00:13:20 +02:00
Let $K$ be a knot,
\begin{align*}
2019-06-07 14:44:18 +02:00
&H_1(\widetilde{X}, \Lambda) \times
2019-05-28 00:13:20 +02:00
H_1(\widetilde{X}, \Lambda)
= \bigoplus_{\substack{k, \xi, \epsilon\\ \xi in S^1}}
(\quot{\Lambda}{p_{\xi}^k}, \epsilon)^{n_k, \xi, \epsilon} \oplus \bigoplus_{k, \eta}
(\quot{\Lambda}{p_{\xi}^k})^{m_k}
\end{align*}
\begin{align*}
\text{Let } \delta_{\sigma}(\xi) = \lim_{\varepsilon \rightarrow 0^{+}}
\sigma(e^{2\pi i \varepsilon} \xi)
- \sigma(e^{-2\pi i \varepsilon} \xi),\\
\text{then }
\sigma_j(\xi) = \sigma(\xi) - \frac{1}{2} \lim_{\varepsilon \rightarrow 0}
\sigma(e^{2\pi i \varepsilon}\xi)
+ \sigma(e^{-2 \pi i \varepsilon}\xi)
\end{align*}
The jump at $\xi$ is equal to
$2 \sum\limits_{k_i \text{ odd}} \epsilon_i$. The peak of the signature function is equal to $\sum\limits_{k_i \text{even}} \epsilon_i$.
%$(\eta_{k, \xi_l^{+}} -\eta_{k, \xi_l^{-}}$
\end{theorem}
\end{proof}
2019-05-29 15:54:14 +02:00
\section{\hfill\DTMdate{2019-05-27}}
2019-06-09 16:47:28 +02:00
2019-05-28 00:13:20 +02:00
....
\begin{definition}
2019-06-25 04:58:03 +02:00
A square hermitian matrix $A$ of size $n$ with coefficients in \\
the Blanchfield pairing if:
$H_1(\bar{X}$
2019-05-28 00:13:20 +02:00
\end{definition}
2019-05-04 18:28:09 +02:00
2019-05-28 00:13:20 +02:00
field of fractions
2019-05-29 20:16:36 +02:00
2019-06-25 19:19:17 +02:00
\section{Surgery \hfill\DTMdate{2019-06-03}}
2019-06-08 15:10:04 +02:00
\begin{theorem}
2019-06-09 21:43:06 +02:00
Let $K$ be a knot and $u(K)$ its unknotting number. Let $g_4$ be a minimal four genus of a smooth surface $S$ in $B^4$ such that $\partial S = K$. Then:
2019-06-08 15:10:04 +02:00
\[
u(K) \geq g_4(K)
\]
\begin{proof}
Recall that if $u(K)=u$ then $K$ bounds a disk $\Delta$ with $u$ ordinary double points.
\\
\noindent
2019-06-25 19:19:17 +02:00
Remove from $\Delta$ the two self intersecting disks and glue the Seifert surface for the Hopf link. The reality surface $S$ has Euler characteristic $\chi(S) = 1 - 2u$. Therefore $g_4(S) = u$.
2019-06-08 15:10:04 +02:00
\end{proof}
2019-06-25 19:19:17 +02:00
%Tim D. Cochran and Peter Teichner
2019-06-08 15:10:04 +02:00
\begin{example}
The knot $8_{20}$ is slice: $\sigma \equiv 0$ almost everywhere but $\sigma(e^{\frac{ 2\pi i}{6}}) = + 1$.
\end{example}
2019-06-09 16:47:28 +02:00
%ref Structure in the classical knot concordance group
%Tim D. Cochran, Kent E. Orr, Peter Teichner
%Journal-ref: Comment. Math. Helv. 79 (2004) 105-123
\subsection*{Surgery}
%Rolfsen, geometric group theory, Diffeomorpphism of a torus, Mapping class group
2019-06-25 19:19:17 +02:00
Recall that $H_1(S^1 \times S^1, \mathbb{Z}) = \mathbb{Z}^2$. As generators for $H_1$ we can set ${\alpha = [S^1 \times \pt]}$ and ${\beta=[\pt \times S^1]}$. Suppose ${\phi: S^1 \times S^1 \longrightarrow S^1 \times S^1}$ is a diffeomorphism.
Consider an induced map on the homology group:
2019-06-08 15:10:04 +02:00
\begin{align*}
H_1(S^1 \times S^1, \mathbb{Z}) \ni \phi_* (\alpha) &= p\alpha + q \beta, \quad p, q \in \mathbb{Z},\\
\phi_*(\beta) &= r \alpha + s \beta, \quad r, s \in \mathbb{Z}, \\
\phi_* &=
\begin{pmatrix}
p & q\\
r & s
2019-06-25 19:19:17 +02:00
\end{pmatrix}.
2019-06-08 15:10:04 +02:00
\end{align*}
2019-06-09 16:47:28 +02:00
As $\phi_*$ is diffeomorphis, it must be invertible over $\mathbb{Z}$. Then for a direction preserving diffeomorphism we have $\det \phi_* = 1$. Therefore $\phi_* \in \Sl(2, \mathbb{Z})$.
\end{theorem}
\vspace{10cm}
\begin{theorem}
Every such a matrix can be realized as a torus.
2019-06-08 15:10:04 +02:00
\end{theorem}
2019-06-09 16:47:28 +02:00
\begin{proof}
\begin{enumerate}[label={(\Roman*)}]
\item
Geometric reason
\begin{align*}
\phi_t:
S^1 \times S^1 &\longrightarrow S^1 \times S^1 \\
S^1 \times \pt &\longrightarrow \pt \times S^1 \\
\pt \times S^1 &\longrightarrow S^1 \times \pt \\
(x, y) & \mapsto (-y, x)
\end{align*}
\item
\end{enumerate}
\end{proof}
2019-06-25 19:19:17 +02:00
\begin{figure}[h]
\fontsize{20}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/dehn_twist.pdf_tex}}
\caption{Dehn twist.}
\label{fig:dehn_twist}
}
\end{figure}
2019-06-09 16:47:28 +02:00
2019-06-08 15:10:04 +02:00
2019-05-29 20:16:36 +02:00
\section{balagan}
2019-06-08 13:33:05 +02:00
\noindent
\noindent
2019-06-09 16:47:28 +02:00
\section{\hfill\DTMdate{2019-05-06}}
\begin{definition}
Let $X$ be a knot complement.
Then $H_1(X, \mathbb{Z}) \cong \mathbb{Z}$ and there exists an epimorphism
$\pi_1(X) \overset{\phi}\twoheadrightarrow \mathbb{Z}$.\\
The infinite cyclic cover of a knot complement $X$ is the cover associated with the epimorphism $\phi$.
\[
\widetilde{X} \longtwoheadrightarrow X
\]
\end{definition}
%Rolfsen, bachalor thesis of Kamila
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/covering.pdf_tex}}
\caption{Infinite cyclic cover of a knot complement.}
\label{fig:covering}
}
\end{figure}
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.8\textwidth}{!}{\input{images/knot_complement.pdf_tex}}
\caption{A knot complement.}
\label{fig:complement}
}
\end{figure}
\noindent
Formal sums $\sum \phi_i(t) a_i + \sum \phi_j(t)\alpha_j$ \\
finitely generated as a $\mathbb{Z}[t, t^{-1}]$ module.
\\
Let $v_{ij} = \Lk(a_i, a_j^+)$. Then
$V = \{ v_ij\}_{i, j = 1}^n$ is the Seifert matrix associated to the surface $\Sigma$ and the basis $a_1, \dots, a_n$. Therefore $a_k^+ = \sum_{j} v_{jk} \alpha_j$. Then
$\Lk(a_i, a_k^+)= \Lk(a_k^+, a_i) = \sum_j v_{jk} \Lk(\alpha_j, a_i) = v_{ik}$.
We also notice that $\Lk(a_i, a_j^-) = \Lk(a_i^+, a_j)= v_{ij}$ and
$a_j^- = \sum_k v_{kj} t^{-1} \alpha_j$.
\\
\noindent
The homology of $\widetilde{X}$ is generated by $a_1, \dots, a_n$ and relations.
2019-06-09 21:43:06 +02:00
\begin{definition}
The Nakanishi index of a knot is the minimal number of generators of $H_1(\widetilde{X})$.
\end{definition}
%see Maciej page
\noindent
Remark about notation: sometimes one writes $H_1(X; \mathbb{Z}[t, t^{-1}])$ (what is also notation for twisted homology) instead of $H_1(\widetilde{X})$.
\\
?????????????????????
\\
\noindent
$\Sigma_?(K) \rightarrow S^3$ ?????\\
$H_1(\Sigma_?(K), \mathbb{Z}) = h$\\
$H \times H \longrightarrow \quot{\mathbb{Q}}{\mathbb{Z}}$\\
...\\
Let now $H = H_1(\widetilde{X})$. Can we define a paring? \\
Let $c, d \in H(\widetilde{X})$ (see Figure \ref{fig:covering_pairing}), $\Delta$ an Alexander polynomial. We know that $\Delta c = 0 \in H_1(\widetilde{X})$ (Alexander polynomial annihilates all possible elements). Let consider a surface $F$ such that $\partial F = c$. Now consider intersection points $F \cdot d$. This points can exist in any $N_k$ or $S_k$.
\[
\frac{1}{\Delta} \sum_{j\in \mathbb{Z} t^{-j}}(F \cdot t^j d) \in \quot{\mathbb{Q}[t, t^{-1}]}{\mathbb{Z}[t, t^{-1}]}
\]
\\
?????????????\\
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{1\textwidth}{!}{\input{images/covering_pairing.pdf_tex}}
\caption{$c, d \in H_1(\widetilde{X})$.}
\label{fig:covering_pairing}
}
\end{figure}
2019-06-09 16:47:28 +02:00
\begin{definition}
The $\mathbb{Z}[t, t^{-1}]$ module $H_1(\widetilde{X})$ is called the Alexander module of knot $K$.
\end{definition}
\noindent
Let $R$ be a PID, $M$ a finitely generated $R$ module. Let us consider
\[
R^k \overset{A} \longrightarrow R^n \longtwoheadrightarrow M,
\]
where $A$ is a $k \times n$ matrix, assume $k\ge n$. The order of $M$ is the $\gcd$ of all determinants of the $n \times n$ minors of $A$. If $k = n$ then $\ord M = \det A$.
\begin{theorem}
Order of $M$ doesn't depend on $A$.
\end{theorem}
\noindent
For knots the order of the Alexander module is the Alexander polynomial.
\begin{theorem}
\[
\forall x \in M: (\ord M) x = 0.
\]
\end{theorem}
\noindent
$M$ is well defined up to a unit in $R$.
\subsection*{Blanchfield pairing}
\section{balagan}
2019-06-20 21:07:49 +02:00
\begin{fact}[Milnor Singular Points of Complex Hypersurfaces]
\end{fact}
%\end{comment}
\noindent
An oriented knot is called negative amphichiral if the mirror image $m(K)$ of $K$ is equivalent the reverse knot of $K$: $K^r$. \\
\begin{problem}
Prove that if $K$ is negative amphichiral, then $K \# K = 0$ in
$\mathscr{C}$.
%
%\\
%Hint: $ -K = m(K)^r = (K^r)^r = K$
\end{problem}
\begin{example}
Figure 8 knot is negative amphichiral.
\end{example}
%
%
2019-06-09 16:47:28 +02:00
\begin{theorem}
Let $H_p$ be a $p$ - torsion part of $H$. There exists an orthogonal decomposition of $H_p$:
\[
H_p = H_{p, 1} \oplus \dots \oplus H_{p, r_p}.
\]
$H_{p, i}$ is a cyclic module:
\[
H_{p, i} = \quot{\mathbb{Z}[t, t^{-1}]}{p^{k_i} \mathbb{Z} [t, t^{-1}]}
\]
\end{theorem}
\noindent
The proof is the same as over $\mathbb{Z}$.
\noindent
2019-06-14 21:37:33 +02:00
%Add NotePrintSaveCiteYour opinionEmailShare
%Saveliev, Nikolai
2019-06-09 16:47:28 +02:00
2019-06-14 21:37:33 +02:00
%Lectures on the Topology of 3-Manifolds
%An Introduction to the Casson Invariant
2019-06-15 17:23:44 +02:00
\begin{figure}[h]
\fontsize{10}{10}\selectfont
\centering{
\def\svgwidth{\linewidth}
\resizebox{0.5\textwidth}{!}{\input{images/ball_4_alpha_beta.pdf_tex}}
}
%\caption{Sketch for Fact %%\label{fig:concordance_m}
\end{figure}
2019-05-29 15:54:14 +02:00
\end{document}
2019-06-09 16:47:28 +02:00