Podsumowanie zajęć. Zadania z zajęć są na tym repozytorium. [Link](http://wolynski.home.amu.edu.pl/E4BC1/index.html) do strony z wykładami. DSTTLI Hasło: E4BC1
- **Odchylenie standardowe** - intuicyjnie rzecz ujmując, odchylenie standardowe mówi, jak szeroko wartości jakiejś wielkości (na przykład wieku, inflacji, kursu walutowego) są rozrzucone wokół jej średniej.
Im mniejsza wartość odchylenia tym obserwacje są bardziej skupione wokół średniej. Odchylenie standardowe z próby ma trochę inny wzór [link](https://pl.wikipedia.org/wiki/Odchylenie_standardowe#Odchylenie_standardowe_z_próby)
- **Współczynnik zmienności** - podaje się w procentach, jest to relacja odchylenia standardowego ze średnią. Mówi nam jak bardzo wartości odbiegają od siebie. Dzięki temu ze jest w procentach mozemy porównywać rózne rozkłady.
- **Funkcja gęstości** - nieujemna funkcja rzeczywista, określona dla rozkładu prawdopodobieństwa, taka że całka z tej funkcji, obliczona w odpowiednich granicach, jest równa prawdopodobieństwu wystąpienia danego zdarzenia losowego.
- **Histogram** – składa się z szeregu prostokątów umieszczonych na osi współrzędnych. Prostokąty te są z jednej strony wyznaczone przez przedziały klasowe wartości cechy, natomiast ich wysokość jest określona przez liczebności (lub częstości, ewentualnie gęstość prawdopodobieństwa) elementów wpadających do określonego przedziału klasowego.
- **Kwantyl** rzędu p to taka zmienna dla której prawdopodobieństwo wystąpienia od 0 do tej zmiennej jest równe p.
Kwantyl rzędu 1/2 to inaczej mediana. Kwantyle rzędu 1/4, 2/4, 3/4 są inaczej nazywane kwartylami.
- pierwszy kwartyl (notacja: Q1) = dolny kwartyl = kwantyl rzędu 1/4 = 25% obserwacji jest położonych poniżej
- drugi kwartyl (notacja: Q2) = mediana = kwantyl rzędu 1/2 = dzieli zbiór obserwacji na połowę
- trzeci kwartyl (notacja: Q3) = górny kwartyl = kwantyl rzędu 3/4 = dzieli zbiór obserwacji na dwie części odpowiednio po 75% położonych poniżej tego kwartyla i 25% położonych powyżej<br/>
- **Rozkład empiryczny** – uzyskany na podstawie badania statystycznego opis wartości przyjmowanych przez cechę statystyczną w próbie przy pomocy częstości ich występowania.
Jeżeli próbka jest reprezentatywna, to stanowi ona podstawę do wnioskowania o populacji z której pochodzi. Wnioskowanie takie wymaga zbudowania modelu “zachowania się” zmiennej (cechy) X w populacji. Budowa modelu polega na przyjęciu założenia o rozkładzie (teoretycznym) zmiennej X w populacji oraz traktowaniu obserwacji jako wartości tej zmiennej.
<br/><br/>
W wykresach na dole to wartość cechy a wysokość słupka to prawdopodobieństwo wystąpienia tej wartości.
- Wykres kwantyl-kwantyl - służy do porównania dwóch rozkładów na podstawie kwantyli. Może służyć do porównania wartości estymowanych z rzeczywistymi. Punkt (x,y) odpowiada jednemu kwantylowi drugiego rodzaju - współrzędna y względem kwantyla tego samego rzędu pierwszego rozkładu - współrzędna x.<br/>
- Metoda bootstrapowa - mamy jakąś próbę z n obeserwacjami i z tej próby losujemy elementy - uzyskujemy próbkę bootstrapową. Powtarzając ten proces otrzymujemy ciąg próbek i odpowiadających jej wartości statystyki. Dzięki tej metodzie, wyniki testów parametrycznych i analiz opartych o modele liniowe są bardziej precyzyjne. Metoda szacowania (estymacji) wyników poprzez wielokrotne losowanie ze zwracaniem zpróby. Przydatna gdy nie znamy typu rozkładu.<br/>
- Estymacja przedziałowa - np jakieś urządzenie moze działać na pewnym przedziale wartości.
- Chcemy "złapać" jakąś wartość w przedział. Jest to lepsze niz próba oszacowania dokładnej wartości.
Jeżeli konstruujemy jakiś przedział z poziomem ufności 0,95 to na 100 prób w 95 nasz parametr jest w przedziale.
- Na podstawie funkcji centralnej mozemy stworzyć przedziały ufności. Funkcję centralną bierzemy z tabelki.
Podstawiamy funkcję centralną do prawdopodobieństwa oraz 1-a, wsadzamy parametr pomiędzy funkcję i wyliczamy a i b. a i b to przedział ufności. Jest przykład w pdfie w labach 5.<br/>
- Rozkład t-Studenta - kolejny typ rozkładu. Podobny to rozkładu normalnego. Rozkład t studentastosujemy tylkow sytuacji, gdy odchylenie standardowe populacji jest nieznane, a rozmiar próby(ilość obserwacji) jest mniejsza niż 30. W przypadku gdy rozmiar próby jest większy lub równy 30 wtedy zamiast brać rozkład t bierzemy rozkład normalny. Wynika to z faktu, że rozkład t studenta dla𝑛≥30jest bardzo podobny do rozkładu normalnego. Dla n <30rozkładstudentajest„szerszy”,tzn.bardziejprawdopodobnesąwartościmocnoodbiegająceodśredniejniżwprzypadkurozkładunormalnego.<br/>
- Bootstrapowe przedziały ufności - po prostu przedział ufności z próbki bootstrapowej. (Z niewielkiej próby tworzymy losując ze zwracaniem zestaw wielu prób)<br/>
y <-c(76.1,75.2,75.8,77.3,77.3,77.0,74.4,76.2,73.5,77.4)
boxplot(x, y)
shapiro.test(x)$p.value
qqnorm(x)
qqline(x)
shapiro.test(y)$p.value
qqnorm(y)
qqline(y)
var(x)
var(y)
var.test(x, y, alternative = "less")$p.value
```
## Testy statystyczne
- Testujemy czy wartość parametru jest istotnie różna od zadanej wartości. Musimy podać hipotezę alternatywną - działanie które podejmujemy jeśli hipoteza zerowa jest fałszywa.
- Błędy pierwszego i drugiego rodzaju. Przez to możemy podjąć dwie decyzje - "odrzucamy hipotezę zerową" lub "nie ma podstaw do odrzucenia hipotezy zerowej".
- Odrzucamy hipotezę zerową gdy jest ona prawdziwa - błąd I rodzaju.
- Przyjmujemy hipotezę zerową gdy jest ona fałszywa - błąd II rodzaju.<br/>
![bledy](lab6/bledy.png)<br/><br/>
- Wybór wartości krytycznej - Ustalamy poziom istotności testu α i dobieramy wartość krytyczną tak, aby
- prawdopodobieństwo popełnienia błędu I rodzaju było mniejsze lub równe α,
- prawdopodobieństwo popełnienia błędu II rodzaju było minimalne.<br/><br/>
- P-wartość (p-value) to graniczny poziom istotności - najmniejszy, przy którym zaobserwowana wartość statystyki testowej prowadzi do odrzucenia hipotezy zerowej. Im p-wartość jest większa, tym bardziej hipoteza H0 jest prawdziwa. Im mniejsza tym niej prawdopodobna jest hipoteza H0. Wartość p, p-wartość, prawdopodobieństwo testowe. Sposoby obliczania z obszaru:
- Prawostronny obszar krytyczny
- Lewostronny obszar krytyczny
- Dwustronny obszar krytyczny<br/><br/>
- Test t Studenta jest metodą statystyczną służącą do porównania dwóch średnich między sobą jeśli znamy liczbę badanych osób, średnią arytmetyczną oraz wartość odchylenia standardowego lub wariancji.
<br/><br/>
Jest to jeden z mniej skomplikowanych i bardzo często wykorzystywanych testów statystycznych używanych do weryfikacji hipotez. Dzięki niemu możemy dowiedzieć się czy dwie różne średnie są różne niechcący (w wyniku przypadku) czy są różne istotnie statystycznie (np. z uwagi na naszą manipulację eksperymentalna).
<br/><br/>
Są gotowe wzory do których podstawiamy wartości w zalezności od rodzaju próby. **Przykład w pdf w labach 6 - dla jednej próby lub dla dwóch wzory są na stronie**.
- Założenie normalności rozkładów błędów możemy (ewentualnie) zastąpić założeniem mówiącym o dysponowaniu dużą próbą, tzn.
- Próby niezależne - obserwacje w poszczególnych populacjach (grupach) dokonywane są na różnych jednostkach eksperymentalnych.
- Próby zależne - obserwacje dokonywane są dwukrotnie na tych samych jednostkach eksperymentalnych.<br/><br/>
- Test Shapiro-Wilka- hipotezy:
- H0 : Próba pochodzi z populacji o rozkładzie normalnym
- H1 : Próba nie pochodzi z populacji o rozkładzie normalnym.
Hipoteza zerowa tego testu mówi nam o tym, że nasza próba badawcza pochodzi z populacji o normalnym rozkładzie. Jeśli test Shapiro-Wilka osiąga istotność statystyczną (p <0,05),świadczytoorozkładzieoddalonymodkrzywejGaussa.Wprzypadkutegotestunajczęściejchcemyotrzymaćwartościnieistotnestatystyczne(p> 0,05), ponieważ świadczą one o zgodności rozkładu zmiennej z rozkładem normalnym.
- Var.test (test F dla dwóch wariancji) - wariancja - Intuicyjnie utożsamiana ze zróżnicowaniem zbiorowości. Wg dokumentacji jest to test pozwalający porównać wariancje z dwóch rozkładów normalnych.
- Analiza wariancji ANOVA - metoda statystyczna służąca do badania obserwacji, które zależą od jednego lub wielu działających równocześnie czynników. Metoda ta wyjaśnia, z jakim prawdopodobieństwem wyodrębnione czynniki mogą być powodem różnic między obserwowanymi średnimi grupowymi.
- Modele jednoczynnikowe – wpływ każdego czynnika jest rozpatrywany oddzielnie, tą klasą zagadnień zajmuje się jednoczynnikowa analiza wariancji. Chcemy sprawdzić, czy jakiś pojedynczy czynnik ma wpływ na mierzoną zmienną zależną.
- Modele wieloczynnikowe – wpływ różnych czynników jest rozpatrywany łącznie, tą klasą zagadnień zajmuje się wieloczynnikowa analiza wariancji.
- Niezależność obserwacji dla poszczególnych jednostek eksperymentalnych.
- Błędy mają rozkłady normalne z zerową wartością oczekiwaną (brak błędu systematycznego) i jednorodną wariancją. - to możemy sprawdzić **testem Bartletta**
## Testy post hoc
Testy post-hoc (po fakcie) wykonuje się jako kolejny krok analizy wariancji. Znane są również pod nazwą porównań wielokrotnych lub porównań parami. Sama analiza wariancji mówi nam o tym czy różnice w porównywanych średnich występują czy nie. Nie wiemy jednak między którymi grupami zachodzą te różnice. Istotny współczynnik F wskazuje jedynie na słuszność (lub brak słuszności) odrzucenia hipotezy zerowej. Jeśli ją odrzucimy musimy dowiedzieć się czy wszystkie średnie różnią się między sobą czy tylko niektóre. Stąd też nazwa “po fakcie” – wykonujemy je dopiero po sprawdzeniu czy wynik F jest istotny statystycznie. Jeśli nie jest, nie musimy wykonywać testów post-hoc.
- Procedura NIR – Fishera.<br/>
![nir](lab7/nir.png)
- Tukey, test HSD i SNK są pochodnymi Tukeya<br/>
![tukey](lab7/tukey.png)
- LSD - Multiple comparisons, "Least significant difference" and Adjust P-values. Wynik też grupy.
- Scheffe - method is very general in that all possible contrasts can be tested for significance and confidence intervals can be constructed for the corresponding linear. The test is conservative. Wynik też grupy.
- pairwise.t.test - daje wynik w postaci tabeli jak różnią się od siebie wyniki poszczególnych grup
### Zagadnienia
- bartlett.test, fligner.test oraz leveneTest użyte do sprawdzenia czy wariancje dwóch grup są takie same.
![bartlett](lab7/bartlett.png)<br/>
- Układ losowych bloków kompletnych. W celu wyeliminowania niejednorodności jednostek eksperymentalnych możemy pogrupować je w bloki. Po prostu przed testami grupujemy.
- Jednoczynnikowa ANOVA - układ doświadczalny. Na stronie analiza wariancji była wytłumaczona bardziej opisowo - na podstawie analogii do układu doświadczalengo.
- Kontrasty - by można było zdefiniować wybrane hipotezy należy dla każdej średniej przypisać wartość kontrastu.
Wartości kontrastu są tak wybierane by ich sumy dla porównywanych stron były liczbami przeciwnymi, a ich wartość dla średnich nie biorących udziału w analizie wynosi 0!!
<br/><br/>
Wykonując później test ANOVA - analiza wariancji możemy zobaczyć czy porównywane grupy (wyszczególnione za pomocą kontrastów) różnią się od siebie.
pred <-stats::predict(model,temp_rok,interval ="prediction")
lines(temp_rok$rok, pred[, 2], lty = 2, col = "red")
lines(temp_rok$rok, pred[, 3], lty = 2, col = "red")
```
### Regresja
Główną ideą regresji jest przewidywanie, prognozowanie danych dla pewnej zmiennej na podstawie innych zmiennych. Innymi słowy, jaką wartość przyjmie dana zmienna gdy będziemy znali wartość innej zmiennej. Oczywiście, aby móc "poszukiwać" wartości jednej zmiennej na podstawie innej zmiennej musimy za pomocą analizy regresji skonstruować model regresyjny, model, który będzie z założonym błędem statystycznym przewidywał wartość, poziom danej cechy.
Założenia analizy regresji:
- Niezależność obserwacji dla poszczególnych jednostek eksperymentalnych.
- Brak błędu systematycznego.
- Jednakowa i stała wariancja błędów.
- Brak korelacji błędów.
- W procedurach testowych oraz w przypadku wykorzystywania przedziału predykcji, potrzebne jest dodatkowe założenie normalności błędów. Powoduje ono, że brak korelacji błędów oznacza ich niezależność.<br/>
- Regresja liniowa - jest najprostszym wariantem regresji w statystyce. Zakłada ona, że zależność pomiędzy zmienną objaśnianą a objaśniająca jest zależnością liniową.<br/>
![liniowa](lab8/liniowa.png)
- Poziom ufoności - jak często mamy rację. Wyrażane w procentach.
- Reszty - o ile różni się wynik zmierzony od przewidzianego.
- Czasem można usunąć wyraz wolny. Analogicznie jest ze współczynnikiem kierunkowym (wtedy zmienne są niezależne) - wzór na stronie<br/>
- Regresja wielokrotna - z regresją wielokrotną (wieloraką) mamy do czynienia, jeśli zmianna zależna Y związana jest z większą ilością zmiennych niezależnych.
- Na stronie są wzory z dopasowaniem, pedykcją, odrzuceniem wyrazu wolnego i estymatorami - analogicznie jak do regresji liniowej.<br/>
![wielokrotna](lab9/wielokrotna.png)
- Regresja krokowa - regresja krokowa jest odmianą analizy regresji (nie tylko regresji liniowej), w której do modelu wprowadzane są jedynie istotne statystycznie zmienne, predyktory, które rzeczywiście „poprawiają” zbudowany model. Możemy odrzucić lub dodać zmienną w każdym kroku.
- Jeśli zaczynamy od stałej i dodajemy zmienne to jest to regresja w przód.
- Możemy też zacząć od wszyskich zmiennych i odejmować - regresja w tył.
- Decydujemy o dodaniu / sprawdzamy co się stanie jak odejmiemy - za pomocą kryterium np test istotności AIC, BIC<br/><br/>
- AIC - kryterium wyboru pomiędzy modelami statystycznymi o różnej liczbie predyktorów.<br/>
![aic](lab9/aic.png)
- BIC - w modelowaniu równań strukturalnych jest to jeden ze wskaźników dopasowania modelu. Minimalizujemy wartość wskaźnika.
- step z k=log to regresja krokowa BIC, k=2 to AIC
- L to zmaksymalizowana funkcja prawdopodobieństwa modelu M L=p(x|theta,M)
W statystyce matematycznej krzywa ROC jest graficzną reprezentacją efektywności modelu predykcyjnego poprzez wykreślenie charakterystyki jakościowej klasyfikatorów binarnych powstałych z modelu przy zastosowaniu wielu różnych punktów odcięcia. Mówiąc inaczej – każdy punkt krzywej ROC odpowiada innej macierzy błędu uzyskanej przez modyfikowanie „cut-off point”. W punkcie (0, 0) model klasyfikuje wszystko jako negative w punkcie (1, 1) model klasyfikuje wszystko jako positive. Pojęcia:
- TPR (True Positive Rate) – określa zdolność klasyfikatora do wykrywania klasy pozytywnej
- Lepiej jest powyżej przekątnej, gorzej poniżej. Przekątna to klasyfikator losowy. Przekątna idzie od początku układu współrzędnych.
- False positive rate = 1-specyficzność
- Punkt równowagi to klasyfikator gdzie czułość = specyficzność. Jest to na przecięciu drugiej przekątnej z wykresem.<br/>
![roc2](lab10/roc2.png)
- AUC - Interpretacja AUROC (Area Under the ROC) to prawdopodobieństwo, że badany model predykcyjny oceni wyżej (wartość score) losowy element klasy pozytywnej od losowego elementu klasy negatywnej. Jest to dokłądność modelu - dla idealnego AUC=100%.<br/>
- Regresja logistyczna – jedna z metod regresji używanych w statystyce w przypadku, gdy zmienna zależna jest na skali dychotomicznej (przyjmuje tylko dwie wartości). Zmienne niezależne w analizie regresji logistycznej mogą przyjmować charakter nominalny, porządkowy, przedziałowy lub ilorazowy. W przypadku zmiennych nominalnych oraz porządkowych następuje ich przekodowanie w liczbę zmiennych zero-jedynkowych taką samą lub o 1 mniejszą niż liczba kategorii w jej definicji.
<br/><br/>
Zwykle wartości zmiennej objaśnianej wskazują na wystąpienie, lub brak wystąpienia pewnego zdarzenia, które chcemy prognozować. Regresja logistyczna pozwala wówczas na obliczanie prawdopodobieństwa tego zdarzenia (tzw. prawdopodobieństwo sukcesu). Wykres krzywej to sigmoid function<br/>
![logistyczna](lab10/logistyczna.png)
![logistyczna2](lab10/logistyczna2.png)
- Rozkład Poissona – dyskretny rozkład prawdopodobieństwa, wyrażający prawdopodobieństwo szeregu wydarzeń mających miejsce w określonym czasie, gdy te wydarzenia występują ze znaną średnią częstotliwością i w sposób niezależny od czasu jaki upłynął od ostatniego zajścia takiego zdarzenia.
- Regresja Poissona - ilość wydarzeń.<br/>
![poisson](lab10/poisson.png)
- Liczba stopni swobody – liczba niezależnych wyników obserwacji pomniejszona o liczbę związków, które łączą te wyniki ze sobą. Liczbę stopni swobody można utożsamiać z **liczbą niezależnych zmiennych losowych**, które wpływają na wynik. Inną interpretacją liczby stopni swobody może być: liczba obserwacji minus liczba parametrów estymowanych przy pomocy tych obserwacji.
- Regresja nieliniowa<br/>
![nieliniowa](lab10/nieliniowa.png)
- Iloraz szans - w skrócie OR określa nam stosunek szansy wystąpienia danego zdarzenia w danej grupie do wystąpienia tego samego zdarzenia w innej porównywanej grupie.